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Abstract

Transmission of a Gaussian source over a time-varying multiple-input multiple-output (MIMO)

channel is studied under strict delay constraints. Availability of a correlated side information at the

receiver is assumed, whose quality, i.e., correlation with the source signal, also varies over time. A

block-fading model is considered for both the states of the time-varying channel and the time-varying

side information; and perfect channel and side information state information at the receiver is assumed,

while the transmitter only has a statistical knowledge. The high SNR performance, characterized by the

distortion exponent, is studied for this joint source-channel coding problem. An upper bound on the

achievable distortion exponent is derived by providing the side information state to the transmitter, while

the channel state remains unknown. For achievability, transmission schemes based on separate source

and channel coding, uncoded transmission, joint decoding, as well as hybrid digital-analog transmission

are considered. Multi-layer schemes, which transmit successive refinement layers of the source, are

also proposed, based on progressive as well as superposed transmission with joint decoding. The optimal

distortion exponent is characterized for the single-input multiple-output (SIMO) and multiple-input single-

output (MISO) scenarios by showing that the distortion exponent achieved by multi-layer superpositon

encoding with joint decoding meets the proposed upper bound. In the MIMO scenario, the optimal

distortion exponent is characterized in the low bandwidth ratio regime, and it is shown that the multi-

layer superposition encoding performs very close to the upper bound in the high bandwidth expansion

regime as well.
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Index Terms

Distortion exponent, time-varying channel and side information, multiple-input multiple-output (MIMO),

joint source-channel coding, joint decoding, broadcast codes, successive refinement.

I. INTRODUCTION

Many applications in wireless networks require the transmission of a source signal over a fading

channel, i.e., multimedia signals over cellular networks or the accumulation of local measurements at

a fusion center in sensor networks, to be reconstructed with the minimum distortion possible at the

destination. In many practical scenarios, the destination receives additional correlated side information

about the underlaying source signal, either form other transmitters in the network or through its own

sensing devices. For example, measurements from other sensors at a fusion center, signals from repeaters

in digital TV broadcasting or relay signals in mobile networks.

The theoretical benefits of having correlated side information at the receiver for source encoding are

well known [1]. However, similar to estimating the channel state information at the transmitter, it is costly

to provide an estimate of the available side information to the transmitter, or may even be impossible

in uncoordinated scenarios. Without the knowledge of the channel and the side information states, a

transmitter needs to transmit in a manner that can adapt dynamically to the time-varying channel and

side information qualities without knowing their realizations.

Here, we consider the joint source-channel coding problem of transmitting a Gaussian source over

a multiple-input multiple-output (MIMO) block-fading channel when the receiver has access to time-

varying correlated side information. Both the channel and the side-information are assumed to follow

block-fading models, whose states are unknown at the transmitter. Moreover, strict delay constraints apply

requiring the transmission of a block of source samples, for which the side-information quality state is

constant, over a block of the channel, during which the channel state is constant. The two blocks do not

necessarily have the same length, and their ratio is defined as the bandwidth ratio between the channel

and the source bandwidths.

When the knowledge of the channel and side information states is available at both the transmitter and
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the receiver (CSI-TR), Shannon’s separation theorem applies [2], assuming that the channel and source

blocks are sufficiently long. In this case, the optimal performance is achieved by first compressing the

source with an optimal source code and transmitting the compressed bits with a capacity achieving channel

code. However, the optimality of source-channel separation does not extend to non-ergodic scenarios such

as the model studied in this paper.

This problem has been studied extensively in the literature in the absence of correlated side information

at the receiver [3]–[5]. Despite the ongoing efforts, the minimum achievable average distortion remains

an open problem; however, more conclusive results on the performance can be obtained by studying the

distortion exponent, which characterizes the exponential decay of the expected distortion in the high SNR

regime [6]. The distortion exponent has been studied for parallel fading channels in [7], for the relay

channel in [8], for point-to-point MIMO channels in [9], for channels with feedback in [10], for the two-

way relay channel in [11], for the interference channel in [12], and in the presence of side information

that might be absent in [13]. In the absence of side information at the receiver, the optimal distortion

exponent in MIMO channels is known in some regimes of operation, such as the large bandwidth regime

[9] and the low bandwidth regime [14]. However, the general problem remains open. In [9] digital multi-

layer superposition transmission schemes are shown to achieve the optimal distortion exponent for high

bandwidth ratios in MIMO systems. The optimal distortion exponent in the low bandwidth regime is

achieved through hybrid digital-analog transmission [9], [14]. In [15], superposition multi-layer schemes

are shown to achieve the optimal distortion exponent some other bandwidth ratios as well. Overall, multi-

layer transmission has been shown to achieve the largest distortion exponents among the existing schemes

in the literature.

The source coding version of our problem, in which the encoder and decoder are connected by an

error-free finite-capacity channel, is studied in [16]. The single-input single-output (SISO) model in the

presence of a time-varying channel and side information is considered for matched bandwidth ratios in

[17], where uncoded transmission is shown to achieve the minimum expected distortion for certain side

information fading gain distributions, while separate source and channel coding is shown to be suboptimal

in general. A scheme based on joint decoding at the receiver, called JDS, is also proposed in [17], and it
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is shown to outperform separate source and channel coding by exploiting the joint quality of the channel

and side information states.

Our goal in this work is to find tight bounds on the distortion exponent when transmitting a Gaussian

source over a time-varying MIMO channel in the presence of time-varying correlated side information

at the receiver1. We first derive an upper bound on the distortion exponent by providing the channel

state information to the encoder. Then, we consider single-layer encoding schemes based on separate

source and channel coding (SSCC), joint decoding (JDS), uncoded transmission and hybrid digital-

analog transmission. Motivated by the improvements provided by multi-layer transmission in [9], we

then consider two different multi-layer joint decoding schemes based on successive refinement of the

source followed either by progressive transmission over the channel (LS-JDS), or by superposing JDS

codes in a broadcast fashion (BS-JDS), and show that these schemes achieve the best distortion exponents.

The main results of this work can be summarized as follows:

• We first derive an upper bound on the distortion exponent by providing both the channel and the

side information states to the encoder. Then, a tighter upper bound is obtained by providing only

the channel state to the encoder.

• We characterize the distortion exponent achieved by JDS. While this scheme achieves a lower

expected distortion than SSCC, we show that it does not improve the distortion exponent.

• We then consider a hybrid digital-analog scheme (HDA-WZ) that combines JDS with an analog

layer. We show that HDA-WZ outperforms JDS not only in terms of the average distortion, but also

the distortion exponent.

• We extend JDS by considering multi-layer transmission, where each layer carries successive re-

finement information for the source sequence. We consider both the progressive (LS-JDS) and

superposition (BS-JDS) transmission of these layers, and derive the respective achievable distortion

exponent expressions.

• We show that BS-JDS achieves the optimal distortion exponent for SISO/SIMO/MISO systems,

1Preliminary results have been published in the conference version of this work in [18] for SISO channels and in [19] and
[20] for MIMO channels.



5

thus characterizing the optimal distortion exponent in these scenarios. We also show that HDA-WZ

achieves the optimal distortion exponent in SISO channels as well.

• In the general MIMO setup, we characterize the optimal distortion exponent in the low bandwidth

ratio regime, and show that it is achievable by both HDA-WZ and BS-JDS. In addition, we show

that in certain regimes of operation, LS-JDS outperforms all the other proposed schemes.

We will use the following notation in the rest of the paper. We denote random variables with upper-case

letters, e.g., X , their realizations with lower-case letters, e.g., x, and the sets with calligraphic letters,

e.g. A. We denote EX [·] as the expectation with respect to X , and EA[·] as the expectation over the set

A. We denote random vectors as X with realizations x and random matrix by H and realizations H. We

denote by R+
n the set of positive real numbers, and by R++

n the set of strictly positive real numbers in

Rn, respectively. We define (x)+ = max{0, x}. Given two functions f(x) and g(x), we use f(x)
.
= g(x)

to denote the exponential equality limx→∞
log f(x)
log g(x) = 1, while

.
≥ and

.
≤ are defined similarly.

The rest of the paper is organized as follows. The problem statement is given in Section II. Then,

known results on the diversity multiplexing tradeoff are provided in Section III, which will be used later

in the paper. Two upper bounds on the distortion exponent are derived in Section IV. Various single-layer

achievable schemes are studied in Section V, while multi-layer schemes are considered in Section VI.

The characterization of the optimal distortion exponent for certain regimes is relegated to Section VII.

Finally, the conclusions are presented in Section VIII.

II. PROBLEM STATEMENT

We wish to transmit a zero mean, unit variance real Gaussian source sequence Xm ∈ Rm of inde-

pendent and identically distributed (i.i.d.) random variables, i.e., Xi ∼ N (0, 1), over a complex MIMO

block Rayleigh-fading channel with Mt transmit and Mr receiver antennas, as shown in Figure 1. In

addition to the channel output, time-varying correlated source side information is also available at the

decoder. Time-variations in the source side information are assumed to follow a block fading model as

well. The channel and the side information states are assumed to be constant for the duration of one

block, and independent of each other, and among different blocks. We assume that each source block is

composed of m source samples, which, due to the delay limitations of the underlying application, are
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Fig. 1. Block diagram of the joint source-channel coding problem with fading channel and side information qualities.

supposed to be transmitted over one block of the channel, which consists of n channel uses. We define

the bandwidth ratio of the system as2

b ,
2n

m
complex channel dimension per real source sample.

The encoder maps each source sequence Xm to a channel input sequence Un ∈ CMt×n using

an encoding function f (m,n) : Rm → CMt×n such that the average power constraint is satisfied:∑n
i=1 Tr{E[UH

i Ui]} ≤Mtn. The memoryless slow fading channel is modeled as

Vi =

√
ρ

Mt
HUi + Ni, i = 1, ..., n,

where H ∈ CMr×Mt is the channel matrix with i.i.d. zero mean complex Gaussian entries, i.e., hij ∼

CN (0, 1), whose realizations are denoted by H, ρ ∈ R+ is the average signal to noise ratio (SNR) in

the channel, and Ni models the additive noise with Ni ∼ CN (0, I). We define M∗ = max{Mt,Mr}

and M∗ = min{Mt,Mr}, and consider λM∗ ≥ · · · ≥ λ1 > 0 to be the eigenvalues of HHH .

In addition to the channel output Vn = [V1, ...,Vn] ∈ CMr×n, the decoder observes Y m ∈ Rm, a

randomly degraded version of the source sequence:

Y m =
√
ρsΓcX

m + Zm,

2This scaled definition is done for consistency of results with previous works in the distortion exponent literature, which use
real/real or complex/complex sources and channels [9].
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where Γc models Rayleigh fading3 in the quality of the side information satisfying E[Γ2
c ] = 1, ρs ∈ R+

models the average quality of the side information, and Zj ∼ N (0, 1), j = 1, ...,m, models the noise.

We define the side information gain as Γ , Γ2
c , and its realization as γ. Then, Γ follows an exponential

distribution with probability density function (pdf):

pΓ(γ) = e−γ , γ ≥ 0.

In this work, we assume that the receiver knows the side information and the channel realizations,

γ and H, while the encoder is only aware of their distributions. The decoder reconstructs the source

sequence X̂m = g(m,n)(Vn, Y m,H, γ) with a mapping g(m,n) : Cn×Mr × Rm × CMt×Mr × R → Rm.

The distortion between the source sequence and the reconstruction is measured by the quadratic average

distortion D , 1
m

∑m
i=1(Xi − X̂i)

2.

We are interested in characterizing the minimum expected distortion, E[D], where the expectation is

taken with respect to the source, the side information and channels state realizations, as well as the noise

terms, and expressed as

ED∗(ρ, ρs, b) , lim
n,m→∞,
2n≤mb.

min
f (m,n),g(m,n)

E[D].

In particular, we are interested in characterizing the optimal performance in the high SNR regime, i.e.,

when ρ, ρs → ∞. We define x as a measure of the average side information quality in the high SNR

regime, as follows:

x , lim
ρ→∞

log ρs
log ρ

.

The performance measure we consider is the distortion exponent, defined as

∆(b, x) , − lim
ρ,ρs→∞

log E[D]

log ρ
,

3The assumption of a real source sequence Xm and a real fading coefficient Γc is made in order to allow a degradation model
possible. That is, the side-information qualities can be ordered among different channel states. Complex source and fading side
information sequences would not allow an ordering in the quality of the side information sequences.
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III. DIVERSITY-MULTIPLEXING TRADEOFF

Here we digress shortly from the distortion exponent problem introduces above, and briefly talk about

another, more commonly used, performance measure in the high SNR regime, that will be instrumented

in our analysis. The diversity-multiplexing tradeoff (DMT) measures the tradeoff between the rate and

reliability in the transmission of a message over a MIMO fading channel in the asymptotic high SNR

regime. Hence, the DMT is a performance measure for the channel coding problem over block-fading

channels. In this section we briefly review some known results on the DMT, which will be useful in the

distortion exponent analysis. We refer the reader to [21] for a more detailed exposition of the DMT.

For a family of channel codes with rate R = r log ρ, where r is the multiplexing gain, the diversity

gain is defined as

d(r) = − lim
ρ→∞

logPe(ρ)

log ρ
,

where Pe(ρ) is the probability of decoding error of the channel code. For each r, the supremum of the

diversity gain d(r) over all coding schemes is given by d∗(r). The DMT for a MIMO channel is given

as the solution to the following problem [21],

d∗(r) = inf
α+

M∗∑
i=1

(2i− 1 +M∗ −M∗)αi

s.t. r ≥
M∗∑
i=1

(1− αi), (1)

where α+ , {(α1, ..., αM∗) ∈ RM∗ : 1 ≥ α1 ≥ ... ≥ αM∗ ≥ 0}. The DMT obtained from (1) is a

piecewise-linear function connecting the points (k, d∗(k)), k = 0, ...,M∗, where d∗(k) = (M∗−k)(M∗−

k). More specifically, for r ≥M∗, we have d∗(r) = 0, and for 0 ≤ r ≤M∗ satisfying k ≤ r ≤ k+ 1 for

some k = 0, 1, ...,M∗ − 1, the DMT curve is characterized by

d∗(r) , Φk −Υk(r − k), (2)
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where we have defined

Φk , (M∗ − k)(M∗ − k) and Υk , (M∗ +M∗ − 2k − 1). (3)

IV. DISTORTION EXPONENT UPPER BOUND

In this section we derive two upper bounds on the distortion exponent by extending the two bounds

on the expected distortion ED∗ obtained in [17] to the MIMO setup with bandwidth mismatch, and

analyzing their high SNR behavior.

A. Fully informed encoder upper bound

The first upper bound, which we denote as the fully informed encoder upper bound, is obtained

by providing the transmitter with both the channel state H and the side information state γ. At each

realization, the problem reduces to the static setup studied in [2], and source-channel separation theorem

applies; that is, the concatenation of a Wyner-Ziv source code with a capacity achieving channel code

is optimal at each realization. Averaging the achieved distortion over the realizations of the channel and

side information states, the expected distortion is found as

EDinf(ρ, ρs, b) = EH,Γ

[
1

1 + ρsγ
2−bC(H)

]
,

where C(H) is the capacity of the MIMO channel in bits/channel use.

Following similar derivations in [9] and [17], we find an upper bound on the distortion exponent, stated

in the following lemma.

Lemma 1. The distortion exponent is upper bounded by the fully informed encoder upper bound, given

by

∆inf(b, x) = x+ ∆MIMO(b), (4)

where

∆MIMO(b) ,
M∗∑
i=1

min{b, 2i− 1 +M∗ −M∗}. (5)
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B. Partially informed encoder upper bound

A tighter upper bound can be constructed by providing the transmitter with only the channel state

realization H while the side information state γ remains unknown. We call this the partially informed

encoder upper bound. The optimality of separate source and channel coding is shown in [17] when the

side information fading gain distribution is discrete, or continuous and quasiconcave for b = 1. The proof

easily extends to the non-matched bandwidth ratio setup and, since in our model pΓ(γ) is exponential,

and hence, is continuous and quasiconcave, separation is optimal at each channel block.

As shown in [16], [17], if pΓ(γ) is monotonically decreasing, the optimal source encoder ignores the

side information completely, and the side-information is used only at the decoder for source reconstruc-

tion4. Concatenating this side-information-ignorant source code with a channel code at the instantaneous

capacity, the minimum expected distortion at each channel state H is given by

Dop(ρ, ρs, b,H) =
1

ρs
e

2bC(H)

ρs E1

(
2bC(H)

ρs

)
,

where E1(x) is the exponential integral given by E1(x) =
∫∞
x t−1etdt. Averaging over the channel state

realizations, the expected distortion is lower bounded as

ED∗pi(ρ, ρs, b) = EH[Dop(ρ, ρs, b,H)]. (6)

An upper bound on the distortion exponent is found by analyzing the high SNR behavior of (6) as

given in the next theorem.

Theorem 1. Let l = 1 if x/M∗ < M∗ − M∗ + 1, and let l ∈ {2, ...,M∗} be the integer satisfying

2l − 3 + M∗ −M∗ ≤ x/M∗ < 2l − 1 + M∗ −M∗ if M∗ −M∗ + 1 ≤ x/M∗ < M∗ + M∗ − 1. The

4 We note that when the distribution of the side information is not Rayleigh, the optimal encoder follows a different strategy.
For example, for quasiconcave continuous distributions the optimal source code compresses the source aiming at a single target
side information state. See [17] for details.
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distortion exponent is upper bounded by

∆up(b, x) =



x if 0 ≤ b < x
M∗
,

bM∗ if x
M∗
≤ b < M∗ −M∗ + 1,

x+ d∗
(
x
b

)
if 1 +M∗ −M∗ ≤ b < 2l − 1 +M∗ −M∗,

x+ d∗
(
x
b

)
if 2l − 1 +M∗ −M∗ ≤ b < x

M∗−k ,

∆MIMO(b) if x
M∗−k ≤ b < M∗ +M∗ − 1,

x+ d∗
(
x
b

)
if M∗ +M∗ − 1 ≤ b,

where k ∈ {l, ...,M∗ − 1} is the integer satisfying 2k − 1 +M∗ −M∗ ≤ b < 2k + 1 +M∗ −M∗.

If x/M∗ ≥M∗ +M∗ − 1, then

∆up(b, x) = x+ d∗
(x
b

)
,

where d∗(r) is the DMT characterized in (2)-(3).

Proof: The proof is given in Appendix I.

Comparing the two upper bounds in Lemma 1 and Theorem 1, we can see that the latter is always

tighter. When x > 0, the two bounds meet only at the two extremes, when either b = 0 or b→∞. Note

that these bounds provide the achievable distortion exponents when either both states (Lemma 1) or only

the channel state (Theorem 1) is available at the transmitter, also characterizing the potential gains from

channel state feedback in fading joint source-channel coding problems.

V. SINGLE LAYER TRANSMISSION

In this section, we propose transmission schemes consisting of a single-layer code, and analyze their

achievable distortion exponent performance.

A. Separate source and channel coding scheme (SSCC)

SSCC is optimal in the presence of CSI-TR, as described in Section IV-A. When CSI-TR is not

available, the binning and the channel coding rates have to be designed solely based on the statistics of
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the channel and the side information. Thus, the transmission suffers from two separate outage events:

outage in channel decoding and outage in source decoding [17]. It is shown in [17, Corollary 1] that, for

monotonically decreasing pdfs, such as pΓ(γ) considered here, the expected distortion is minimized by

avoiding outage in source decoding, that is, by not using binning. Therefore, the optimal SSCC scheme

compresses the source sequence at rate Rs ignoring the side information, and transmits the compressed

bits over the channel with a channel code with rate Rc such that b
2Rc = Rs.

At the encoder, the quantization codebook consists of 2mRs length-m codewords, Wm(i), i = 1, ..., 2mRs ,

generated through a ‘test channel’ given by W = X +Q, where Q ∼ N (0, σ2
Q), and is independent of

X . The quantization noise variance is such that Rs = I(X;W ) + ε, for an arbitrarily small ε > 0, i.e.,

σ2
Q = (22(Rs−ε)−1)−1. For the channel code, a Gaussian channel codebook with 2nRc length-n codewords

Un(s) is generated independently with U ∼ CN (0, I), and each codeword Un(s), s ∈ [1, ..., 2nRc ], is

assigned to a quantization codeword Wm(i). Given a source sequence Xm, the encoder searches for a

quantization codeword Wm(i) jointly typical with Xm, and transmits the corresponding channel codeword

U(i).

The decoder recovers the digital codeword with high probability if Rc < I(U,V). An outage is

declared whenever due to the channel randomness, the channel rate Rc is above the capacity and the

codeword cannot be recovered. Then, the outage event is given by

Os = {H : Rc ≥ I(U;V)} , (7)

where I(U;V) = log det(I + ρ
M∗

HHH).

If Wm is successfully decoded, the source sequence is estimated with an MMSE estimator using the

quantization codeword and the side information sequence, i.e., X̂i = E[Xi|Wi, Yi], and reconstructed

with a distortion Dd(bRc/2, γ), where

Dd(R, γ) , (ρsγ + 22R)−1. (8)

If there is an outage over the channel, only the side information is used in the source reconstruction

and the corresponding distortion is given by Dd(0, γ). The probability of outage depends only on the
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channel state H. The expected distortion for SSCC can be written as

EDs(bRc) = EOcs [Dd(bRc/2,Γ)] + EOs [Dd(0,Γ)] (9)

=(1− Po(H))EΓ[Dd(bRc/2,Γ)] + Po(H)EΓ[Dd(0,Γ)],

where Po(H) , Pr{Rc ≥ log det(I + ρ
M∗

HHH)} is the probability of channel outage.

In the next theorem, the distortion exponent achievable by SSCC is provided.

Theorem 2. The achievable distortion exponent for SSCC, ∆s(b, x), is given by

∆s(b, x) = max

{
x, b

Φk + kΥk + x

Υk + b

}
, for b ∈

[
Φk+1 + x

k + 1
,
Φk + x

k

)
, k = 0, 1, ...,M∗ − 1,

where Φk and Υk are as defined in (3).

Proof: See Appendix II.

The illustration of the achievable distortion exponent by the SSCC scheme and its comparison with

other transmission techniques and the proposed upper bound is deferred to Section V-E.

B. Joint decoding scheme (JDS)

In this section, we consider a joint source-channel coding scheme, which, by joint decoding of the

channel and the source codewords, reduces the outage probability. It uses no explicit binning at the

encoding, and the success of decoding depends on the joint quality of the channel and the side information

states. This scheme is considered in [17] for a SISO system, and is shown to outperform SSCC at any

SNR and to achieve the optimal distortion exponent in certain regimes.

At the encoder, we generate a codebook of 2mRj length-m quantization codewords Wm(i) and an

independent Gaussian codebook of size 2n
b

2
Rj with length-n codewords U(i) ∈ CMt×n with U ∼

CN (0, I), such that b
2Rj = I(X;W )+ ε, for an arbitrarily small ε > 0. Given a source outcome Xm, the

transmitter finds the quantization codeword Wm(i) jointly typical with the source outcome and transmits

the corresponding channel codeword U(i). Joint typicality decoding is performed such that the decoder

looks for an index i for which both (Un(i), V n) and (Y m,Wm(i)) are jointly typical. Then the outage
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event is

Oj =

{
(H, γ) : I(X;W |Y ) ≥ b

2
I(U;V)

}
, (10)

where I(U;V) = log det(I + ρ
M∗

HHH) and I(X;W |Y ) = 1
2 log(1 + 2Rj−ε−1

γρs+1 ).

Similarly to SSCC, if there is no outage the source is reconstructed using both the quantization

codeword and the side information sequence with an MMSE estimator, while only the side information

is used in case of an outage.

The joint decoding produces a binning-like decoding: only some Vn are jointly typical with U(s),

generating a virtual bin of Wm codewords from which only one is jointly typical with Y m with high

probability. The size of those bins depends on the particular realizations of H and Γ unlike in a Wyner-Ziv

scheme, in which the bin sizes are chosen in advance. Since the outage event depends jointly on the

channel and the side information states (H, γ), the expectation over the states is not separable as in (9).

Then, the expected distortion for JDS is expressed as

EDj(Rj) = EOcj

[
Dd

(
b

2
Rj ,Γ

)]
+ EOj [Dd(0,Γ)].

JDS reduces the probability of outage, and hence, the expected distortion compared to SSCC. However,

the next theorem reveals that both schemes achieve the same distortion exponent.

Theorem 3. The distortion exponent of the JDS scheme, ∆j(b, x) is the same as that of SSCC charac-

terized in Theorem 2, i.e., ∆j(b, x) = ∆s(b, x).

Proof: See Appendix III.

Although JDS and SSCC achieve the same distortion exponent in the current setting, JDS is shown to

achieve larger distortion exponents than SSCC in general [17]. A comparison between the two schemes

is deferred to Section V-E.

C. Uncoded transmission

Uncoded transmission is a robust joint source-channel coding scheme that is known to have a gradual

degradation with worsening channel quality. Uncoded transmission is suboptimal even in a point-to-point
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SISO channel in the presence of side information; however the benefits of uncoded transmission have been

illustrated in the presence of time-varying side information in [17]. It is shown in [17] that in a fading

SISO channel with b = 1, uncoded transmission is exactly optimal in terms of the expected distortion

when the side information gain follows a monotonically decreasing pdf, such as pΓ(γ) in our model.

However, for general MIMO channels and bandwidth ratios, it falls short of the optimal performance,

since it cannot fully exploit the additional degrees-of-freedom in the system.

In uncoded transmission, the source samples are used directly as the channel inputs. Since the channel

is complex, we reorder the source sequence as X
m

2
c ∈ C

m

2 given by

X
m

2
c =

1√
2

(
[X1, ..., Xm

2
] + j[Xm

2
+1, ..., Xm]

)T
, (11)

where j=
√
−1. In the transmission we consider M∗ of the Mt transmit antennas since only M∗ samples

are effectively transmitted at each channel use, because rank{H} ≤M∗.

For bM∗ ≤ 1, the channel input Un is generated scaling the first nM∗ source samples of X
m

2
c and

mapping them to the channel input as Un = [XM∗
c,1 ,X

2M∗
c,M∗+1, ..,X

nM∗
c,(n−1)M∗+1]T . At reception, the

transmitted nM∗ source samples are reconstructed with an MMSE estimator using Vn and Y nM∗ , while

the remaining m
2 −nM∗ source samples that have not been transmitted, are estimated using only Y m

nM∗+1.

For bM∗ ≥ 1, the whole source sequence is transmitted in the first m
2M∗

channel uses scaling the power

by bM∗, and reconstructed at the decoder using an MMSE estimator. The minimum average distortion

achieved by uncoded transmission with average power P at state (H, γ) is given by

Du(P, γ,H) ,
M∗∑
i=i

1

1 + Pµiρ+ γρs
, (12)

where µ1 ≥ · · · ≥ µM∗ ≥ 0 are the ordered eigenvalues of the matrix HM∗H
H
M∗

, where HM∗ is

the submatrix of H formed by the M∗ columns corresponding to the antennas effectively used for

transmission. Then, the expected distortion is found as

EDu =


bM∗E[Du(1,H,Γ)] + (1− bM∗)E[Du(0,H,Γ)] if bM∗ < 1,

E[Du(bM∗,H,Γ)] if bM∗ ≥ 1.
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The distortion exponent for uncoded transmission is obtained similarly to ∆d(b, x) and is given in the

next theorem without proof.

Theorem 4. The distortion exponent for uncoded transmission, ∆u(b, x) is given by

∆u(b, x) =


x if bM∗ < 1,

max{1, x} if bM∗ ≥ 1.

It is evident from Theorem 3 that uncoded transmission cannot exploit the available degrees-of-freedom

in the system (multiple antennas, channel bandwidth), and its distortion exponent performance on its

own is very poor compared to digital and hybrid schemes. In Section V-E, the performance of uncoded

transmission will be compared to the proposed achievable schemes and upper bounds.

D. HDA Wyner-Ziv coding (HDA-WZ)

In this section we consider a hybrid digital-analog (HDA) scheme that quantizes the source sequence,

uses a scaled version of the quantization error as the channel input, and exploits joint decoding at the

decoder. This scheme is introduced in [22] and named as HDA Wyner-Ziv Coding (HDA-WZ), and

shown to be optimal in static SISO channels in the presence of side information for b = 1. HDA-WZ is

considered in [17] in the SISO fading setup with b = 1, and it is shown to achieve the optimal distortion

exponent for a wide family of side information distributions. In this paper, we propose a generalization

of HDA-WZ in [17] to the MIMO channel and to bandwidth ratios satisfying b ≥ 1/M∗.

For b ≤ 1/M∗, we ignore the available side information and use the hybrid digital-analog scheme

proposed in [14]. In this scheme, which we denote by superposed HDA (HDA-S), the source sequence

is divided and transmitted using two layers. The first layer transmits a part of the source sequence in an

uncoded fashion, while the second layer digitally transmits the rest of the source samples. The two layers

are superposed and the available power is allocated among them to maximize the achievable distortion

exponent. At the destination, the digital layer is decoded treating the uncoded layer as noise. Then, the

source sequence is reconstructed using both layers. The distortion exponent achievable by HDA-S is

given by ∆h(b, x) = bM∗ for b ≤ 1/M∗ [14].
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HDA-S can be modified to include joint decoding and to use the available side information at the

reconstruction to reduce the expected distortion. However, as we will show in Section VII-A, if 0 ≤ b ≤

x/M∗, simple MMSE estimation of the source sequence is sufficient to achieve the optimal distortion

exponent, given by ∆∗(b, x) = x, and if x/M∗ ≤ b ≤ 1/M∗, HDA-S achieves the optimal distortion

exponent. Therefore, considering HDA-S with joint decoding will not improve the distortion exponent in

this regime.

Lemma 2. The distortion exponent achievable by HDA-S is given by ∆h(b, x) = bM∗ if b ≤ 1/M∗.

Next, we consider the HDA-WZ scheme for bM∗ > 1. At the encoder, consider a quantization codebook

of 2mRh length-m codewords Wm(s), s = 1, ..., 2mRh , with a test channel W = X + Q, where Q ∼

N (0, σ2
Q) is independent of X , and quantization noise variance is chosen such that Rh

2 = I(W ;X) + ε,

for an arbitrarily small ε > 0, i.e., σ2
Q , (2Rh−ε − 1)−1. Then, each Wm is reordered into length- m

2M∗

complex codewords W(s) = [W1(s), ...,W m

2M∗
(s)] ∈ C

m

2M∗
×M∗ , where Wi(s), i = 1, ..., m

2M∗
, is given

by

Wi(s) =
1√
2

(
[WiM∗+1(s); ...;W(i+1)M∗(s)] + j[W(i+1)M∗+1(s); ...;W2iM∗(s)]

)T
,

Similarly, we can reorder Xm and Qm, and define Xi and Qi for i = 1, ..., m
2M∗

.

We then generate 2mRh independent auxiliary random vectors T ∈ C
(
n− m

2M∗

)
×M∗ distributed as Ti ∼

CN (0, I), for i = 1, ..., n − m
2M∗

and assign one to each W(s) to construct the codebook of size 2mRh

consisting of the pairs of codewords (W(s),T(s)), s = 1, ..., 2mRh . For a given source sequence Xm,

the encoder looks for the s∗-th codeword W(s∗) such that (W(s∗), Xm) are jointly typical. A unique

s∗ is found if M∗Rh > I(W;X). Then, the pair (W(s∗),T(s∗)) is used to generate the channel input,

which is scaled to satisfy the power constraint:

Ui =


√

1
σ2
Q

[Xi −Wi(s
∗)], for i = 1, ..., m

2M∗
,

Ti− m

2M∗
(s∗), for i = m

2M∗ + 1, ..., n.

Basically, in the first block of m
2M∗

channel accesses we transmit a scaled version of the error of the
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quantization codeword Qi in an uncoded fashion, while in the second block of n − m
2M∗

accesses we

transmit a digital codeword.

The decoder looks for an index s such that W(s), Y m and the channel output corresponding to the un-

coded input, V
m

2M∗
W , [V1, . . . ,Vm/2M∗ ], are jointly typical, while simultaneously T(s) is jointly typical

with the channel output that corresponds to the coded input block, V
n− m

2M∗
T , [Vm/2M∗+1, . . . ,Vn]. Let

Yi = [Y(i−1)M∗+1, ..., YiM∗ ]
H , for i = 1, ..., mM∗ , be blocks of Y m. At the receiver, decoding is successful

with high probability if

I(W;X) < M∗Rh < I(WT;VY) (13)

The outage event is obtained in Appendix IV-A as

Oh =

{
(H, γ) : I(W,X) ≥ I(W;VWY) + (bM∗ − 1)I(T;VT )

}
, (14)

where I(T;VT ) = log det(I + ρ
M∗

HHH) and,

I(W;VWY) = log

(
(ξ(1 + σ2

Q))M∗ det(I + ρ
Mt

HHH))

det(I + σ2
Q( ρ

Mt
HHH + ξI))

)
, (15)

where ξ , 1 + ρsγ.

If W
m

2M∗ is successfully decoded, each Xn is reconstructed with an MMSE estimator using V and

Y m with a distortion

Dh(σ2
Q,H, γ)=

1

M∗

M∗∑
i=1

(
1 + ρsγ +

1

σ2
Q

(
1 +

ρ

M∗
λi

))−1

. (16)

The derivation of (16) is found in Appendix IV-B.

If an outage occurs and W is not decoded, only Y m is used in the reconstruction, since Un is

uncorrelated with the source sequence by construction, and so is Vn. Using an MMSE estimator, the

achievable distortion is given by Dd(0, γ). Then, the expected distortion for HDA-WZ is found as

EDh(Rh) = EOch [Dh(σ2
Q,H,Γ)] + EOh [Dd(0,Γ)].
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Fig. 2. Minimum expected distortion achievable by SSCC and JDS for a SISO and a 3 × 3 MIMO channel for b = 2 and
x = 1. The partially informed encoder bound is also included.

The distortion exponent of HDA-WZ, ∆h(b, x), is characterized in the next theorem.

Theorem 5. Let bM∗ > 1. The distortion exponent achieved by HDA-WZ, ∆h(b, x), is given by

∆h(b, x) =


x if 1

M∗
≤ b < x

M∗
,

1 + (bM∗−1)(Φk+kΥk−1+x)
bM∗−1+M∗Υk

, if b ∈
[

Φk+1−1+x
k+1 + 1

M∗
, Φk−1+x

k + 1
M∗

)
,

for k = 0, ...,M∗ − 1.

Proof: See Appendix IV-C.

E. Comparison of single-layer transmission schemes

Here, we compare the performance of the single-layer schemes presented in this section. Figure 2

shows the expected distortion achievable by SSCC and JDS schemes and the partially informed encoder
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Fig. 3. Distortion exponents upper bounds and lower bounds for single-layer schemes in function of b for x = 0.5 and 2 × 2
MIMO. The performance of these schemes is also shown in the absence of side information, i.e., x = 0.

lower bound on the expected distortion in a SISO and a 3× 3 MIMO setup for b = 2. It is observed that

JDS outperforms SSCC in both SISO and MIMO scenarios. We also observe that both SSCC and JDS

fall short of the expected distortion lower bound, ED∗pi. Moreover the gap increases with the number of

degrees-of-freedom in the system. We note that not only the gap between the achievable distortion values

increase, but also the gap between the slopes of the curves, which means that the proposed transmission

schemes perform especially poorly in the high SNR regime.

To illustrate this, we compare the distortion exponent achieved by SSCC, JDS, uncoded transmission,

HDA-S and HDA-WZ in Figure 3 in a 2×2 MIMO channel, as a function of the bandwidth ratio. In the

figure, we consider both a side information quality of x = 0.5, and the case without side information,

i.e., x = 0. First, we note that, as discussed in Section VII-A, for b ≤ 0.25, the upper bound is achieved

by simply estimating the source sequence based on the side information, while for 0.25 ≤ b ≤ 0.5, the

upper bound is achieved by the S-HDA scheme, ignoring the side information. For larger bandwidth ratios,

HDA-WZ improves upon SSCC and JDS, while uncoded transmission achieves the optimal distortion

exponent for b = 0.5 and then saturates, becoming highly suboptimal for large b values. Note that uncoded
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transmission outperforms SSCC and JDS for the range 0.5 ≤ b . 0.7 if x = 0.5, and for 0.5 < b < 1 if

x = 0. In general we observe that single-layer schemes are not capable of fully exploiting the available

degrees-of-freedom in the system, and their distortion exponent performance falls short of the proposed

upper bounds, especially in the large bandwidth regime. This motivates us to consider other achievability

techniques in order to achieve higher distortion exponent values.

VI. MULTI-LAYER TRANSMISSION

In the previous section, we have observed that the distortion exponent achievable with single-layer

schemes is far from the upper bound, especially in the high bandwidth regime. Here, we consider multi-

layer schemes to improve the achievable distortion exponent in this regime. Multi-layer transmission is

proposed in [9] to combat channel fading by transmitting multiple layers that carry successive refinements

of the source [23]. At the receiver, as many layers as possible are decoded depending on the channel

state. The better the channel state, the more layers can be decoded and the smaller is the distortion at

the receiver. We propose to use successive refinement codewords that exploits the side information at the

destination [24], and the extension of the JDS schemes to progressive multi-layer JDS transmission and

broadcast strategy with JDS, and derive the corresponding distortion exponents.

A. Progressive multi-layer JDS transmission (LS-JDS)

In this section we consider the progressive transmission of multiple layers over the channel. The refine-

ment codewords are transmitted one after the other over the channel using the JDS scheme introduced in

Section V-B. Similarly to [9], we assume that each layer is allocated the same time resources (or number

of channel accesses). In the limit of infinite layers, this assumption does not incur a loss in performance.

At the encoder, we generate L Gaussian quantization codebooks, each with 2mRl codewords Wm
l and

bRl/2L = I(X;Wl|W l−1
1 )+ε/2, for l = 1, ..., L, with an arbitrarily small ε > 0, such that each Gaussian

codebook is a refinement for the previous layers [24]. The quantization codewords Wn
l are generated

with a test channel given by Wl = X +
∑L

i=lQi, for l = 1, ..., L, where Ql ∼ N (0, σ2
l ) are independent

of X and of each other. Note that Y −X −WL −WL−1 − · · · −W1 form a Markov chain. As shown
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in Appendix V-A, for a given rate tuple R , [R1, ..., RL], with R1 ≥ · · ·RL ≥ 0, the quantization noise

variances satisfy

L∑
i=l

σ2
i = (2

∑l
i=1( b

L
Ri−ε) − 1)−1, l = 1, ..., L. (17)

We generate L independent channel codebooks, each with 2n
bRl
2L length-nL codewords Un/L

l ∈ CMt×n/L

with Ul,i ∼ CN (0, I). Each successive refinement codeword is transmitted using JDS as in Section V-B.

At the destination, the decoder successively decodes each refinement codeword using joint decoding from

the first layer up to the L-th layer. Then, l layers will be successfully decoded if

I(X;Wl|Y,W l−1
1 ) <

b

2L
I(U;V) ≤ I(X;Wl+1|Y,W l

1),

that is, l layers are successfully decoded while there is an outage in decoding the (l + 1)-th layer. Let

us define the outage event, for l = 1, ..., L, as follows

Olsl ,

{
(H, γ) :I(X,Wl|Y,W l−1

1 ) ≥ b

2L
I(U;V)

}
, (18)

where I(U,V) = log det
(
I + ρ

M∗
HHH

)
, and, with R0 , 0,

I(X;Wl|W l−1
1 , Y ) =

1

2
log

(
2
∑l
i=1

b

L
Ri + γρs

2
∑l−1
i=1

b

L
Ri + γρs

)
.

The details of the derivation are given in Appendix V-B. Due to the successive refinability of the Gaussian

source, provided l layers have been successfully decoded, even in the presence of side information [24],

the receiver reconstructs the source with a MMSE estimator using the side information and the decoded

layers with a distortion given by Dd(
∑l

i=1 bRl/2L, γ). The expected distortion can be expressed as

follows.

EDls(R) =

L∑
l=0

E(Olsl )c
⋂
Olsl+1

[
Dd

(
l∑

i=1

bRl
2L

, γ

)]
. (19)

The distortion exponent achieved by LS-JDS is given next.
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Theorem 6. Let us define

φk ,M∗ −M∗ + 2k − 1, Mk ,M∗ − k + 1, (20)

and the sequence {ci} as

c0 = 0, ci = ci−1 + φi ln

(
Mi

Mi − 1

)
,

for i = 1, ...,M∗ − 1, and cM∗ =∞.

The distortion exponent achieved by LS-JDS with infinite number of layers is given by ∆∗ls(b, x) = x

if b ≤ x/M∗, and if

ck−1 +
x

Mk
< b ≤ ck +

x

Mk − 1
,

for some k ∈ {1, ...,M∗}, the achievable distortion exponent is given by

∆∗ls(b, x) = x+

k−1∑
i=1

φi +Mkφk ×
(

1− e−
b(1−κ∗)−ck−1

φk

)
,

where

κ∗ =
φk
b
W

e b−ck−1

φk x

Mkφk

 ,

and W(z) is the Lambert W function, which gives the principal solution for w in z = wew.

Proof: See Appendix V-B.

The proof of Theorem 6 indicates that the distortion exponent for LS-JDS is achieved by allocating

an equal rate among the first κ∗L layers to guarantee that the distortion exponent is at least x. Then, the

rest of the refinement layers, are used to further increase the distortion exponent with the corresponding

rate allocation. Note that for x = 0, we have κ∗ = 0, and Theorem 6 boils down to Theorem 4.2 in [9].
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B. Broadcast strategy with JDS (BS-JDS)

In this section, we consider using the broadcast strategy in which the successive refinement layers are

transmitted by superposition, and are decoded one by one with joint decoding. The receiver decodes as

many layers as possible using successive joint decoding, and reconstructs the source sequence using the

successfully decoded layers and the side information sequence.

At the encoder, we generate L Gaussian quantization codebooks, at rates b
2Rl = I(X;Wl|W l−1

1 )+ε/2,

l = 1, ..., L, ε > 0, as in Section VI-A, and L channel codebooks Un
l , l = 1, . . . , L, i.i.d. with Ul,i ∼

CN (0, I). Let ρ = [ρ1, ..., ρL, ρL+1]T be the power allocation among channel codebooks such that

ρ =
∑L+1

i=1 ρi. We consider a power allocation strategy, such that ρl = ρξl−1 − ρξl with 1 = ξ0 ≥ ξ1 ≥

. . . ≥ ξL ≥ 0, and define ξ , [ξ1, ..., ξL]. In the last layer, the layer L+ 1, Gaussian i.i.d. noise sequence

with distribution Ñi ∼ CN (0, I) is transmitted using the remaining power ρL+1 , ρξL for mathematical

convenience. Then, the channel input Un is generated as the superposition of the L codewords, Un
l with

the corresponding power allocation
√
ρl as

Un =
1
√
ρ

L∑
j=1

√
ρjU

n
j +

√
ρξLÑn.

At the receiver, successive joint decoding is used from layer 1 up to layer L, considering the posterior

layers as noise. Layer L+ 1, containing the noise, is ignored. The outage event at layer l, provided l− 1

layers have been decoded successfully, is given by

Obsl =

{
(H, γ) :

b

2
I(Ul;V|Ul−1

1 ) ≤ I(X;Wl|Y,W l−1
1 )

}
. (21)

If l layers are decoded, the source is reconstructed at a distortion Dd(
∑l

i=1 bRi, γ) with an MMSE

estimator, and the expected distortion is found as

EDbs(R, ξ)=

L∑
l=1

EObsk+1

[
Dd

(
l∑

i=0

b

2
Ri,Γ

)]
,

where R , [R1, ..., RL] and ObsL+1 is the set of states in which all the L layers are successfully decoded.

The problem of optimizing the distortion exponent for BS-JDS for L layers, which we denote by
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∆L
bs(b, x), can be formulated as a linear optimization program over the multiplexing gains r , [r1, ..., rl],

where Rl = rl log ρ for l = 1, ..., L, and the power allocation ξ, as shown in (70) in Appendix VI-A, and

can be efficiently solved numerically. In general, the performance of BS-JDS is improved by increasing

the number of layers L, and an upper bound on the performance, denoted by ∆∗bs(b, x), is given in

the limit of infinite layers, i.e., L → ∞, which can be approximated by numerically solving ∆L
bs(b, x)

with a large number of layers. However, obtaining a complete analytical characterization of ∆L
bs(x, b)

and ∆∗bs(b, x) is in general complicated. In the following, we fix the multiplexing gains, and optimize

the distortion exponent over the power allocation. While fixing the multiplexing gains is potentially

suboptimal, we obtain a closed form expression for an achievable distortion exponent, and analytically

evaluate its limiting behavior. We shall see that as the number of layers increases, this analytical solution

matches the numerically optimized distortion exponent.

First, we fix the multiplexing gains as r̂ = [r̂1, ..., r̂L] where r̂l = [(k+1)(ξl−1−ξl)−ε1] for l = 1, ..., L,

for some ε1 → 0, and optimize the distortion exponent over ξ. The achievable distortion exponent is

given in the next theorem.

Theorem 7. Let us define

ηk ,
b(k + 1)− Φk+1

Υk
and Γk ,

1− ηL−1
k

1− ηk
. (22)

The distortion exponent ∆̂L
bs(b, x) is achievable by BS-JDS with L layers and multiplexing gain r̂, and

is given by ∆̂L
bs(b, x) = x for bM∗ ≤ x and by

∆̂L
bs(b, x) = x+ Φk −

Υk(Υk(x+ Φk) + xb(k + 1)Γk)

(Υk + b(1 + k))(Υk + b(1 + k)Γk)− b(k + 1)ΦkΓk
, (23)

for

b ∈
[

Φk+1 + x

k + 1
,
Φk + x

k

)
, k = 0, ...,M∗ − 1.

Proof: See Appendix VI.

An upper bound on the performance of BS-JDS with multiplexing gains r̂l is obtained for a continuum

of infinite layers, i.e., L→∞.
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Corollary 1. The distortion exponent of BS-JDS with multiplexing gain r̂ in the limit of infinite layers,

∆̂∞bs (b, x), is found, for k=0, ...,M∗−1, by

∆̂∞bs (b, x) = max{x, b(k + 1)} for b∈
[

Φk+1 + x

k + 1
,

Φk

k + 1

)
,

and

∆̂∞bs (b, x) = Φk + x

(
b(1 + k)− Φk

b(1 + k)− Φk+1

)
for b ∈

[
Φk

k + 1
,
Φk + x

k

)
.

Proof: See Appendix VI-A.

The solution in Theorem 7 is obtained by fixing the multiplexing gains to r̂. This is potentially

suboptimal since it excludes, for example, the performance of single-layer JDS from the set of feasible

solutions. By fixing r such that r2 = · · · = rL = 0, BS-JDS reduces to single layer JDS and achieves a

distortion exponent given in Theorem 3, i.e., ∆j(b, x). Interestingly, for b satisfying

b ∈
[

Φk

k
,
Φk + x

k

)
, k = 1, ...,M∗ − 1,

single-layer JDS achieves a larger distortion exponent than ∆̂∞bs (b, x) in Corollary 1, as shown in Figure

4. Note that this region is empty for x = 0, and thus, this phenomena does not appear in the absence of

side information. The achievable distortion exponent for BS-JDS can be stated as follows.

Lemma 3. BS-JDS achieves the distortion exponent

∆̄bs(b, x) = max{∆̂∞bs (b, x),∆j(b, x)}.

Next, we consider the numerical optimization of the distortion exponent ∆L
bs(b, x) and compare it

with the distortion exponent achieved by fixing the multiplexing gain. In Figure 4 we show one instance

of the numerical optimization of ∆L
bs(b, s) for 3 × 2 MIMO and x = 0.5, for L = 2 and L = 500

layers. We also include the distortion exponent achievable by single-layer JDS, i.e., when L = 1, and the

exponent achievable by BS-JDS with multiplexing gains r̂, with L = 2 layers and in the limit of infinite

layers, denoted by ∆̂2
bs(b, x) and ∆̂∞bs (b, x), respectively. We observe that the numerically optimized
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distortion exponent improves as the number of layers increases. There is a significant improvement in

the distortion exponent just by using two layers in the high bandwidth regime, while this improvement

is not so significant for intermediate b values. We also note that there is a tight match between the

distortion exponent achievable by Lemma 3 and the one optimized numerically for L = 500 layers.

For L = 2, we observe a tight match between ∆̂2
bs(b, x) and ∆2

bs(b, x) in the high bandwidth regime.

However, for intermediate bandwidth ratio values, ∆̂2
bs(b, x) is significantly worse than ∆2

bs(b, x) and, in

general, worse than ∆j(b, x). Note that, as expected, if the power allocation and the multiplexing gains

are jointly optimized, using two layers provides an improvement on the distortion exponent, i.e., ∆2
bs(b, x)

outperforms ∆j(b, x). We also observe that ∆̂2
bs(b, x) and ∆̂bs(b, x) are discontinuous at b = 2.5, while

this discontinuity is not present in the numerically optimized distortion exponents.

Our extensive numerical simulations suggest that, for b values satisfying (24), the performance of

∆L
bs(b, x) reduces to the distortion exponent achievable by a single layer. We also observe that as the

number of layers increases, the difference between ∆L
bs(b, x) and ∆̂L

bs(b, x) is reduced, and that the

distortion exponent achievable by BS-JDS as stated in Lemma 3, i.e., ∆̄bs(b, x), is indeed very close to

the optimal performance that can be achieved by jointly optimizing the multiplexing gain and the power

allocation. In the next section, we will see that in certain cases fixing the diversity multiplexing gain to r̂

suffices for BS-JDS to meet the partially informed upper bound in the MISO/SIMO setup, and therefore

∆∗bs(b, x) = ∆̂∞bs (b, x).

VII. COMPARISON OF THE PROPOSED SCHEMES AND DISCUSSION

In this section, we compare the performances of the proposed schemes with each other and with the

derived upper bounds. First, we use the upper bound derived in Section IV to characterize the optimal

distortion exponent for bandwidth ratio values that satisfy 0 ≤ b ≤ max{M∗ −M∗ + 1, x}/M∗. We

show that, when the bandwidth ratio satisfies 0 ≤ b ≤ x/M∗, then, the optimal distortion exponent is

achieved by ignoring the channel and reconstructing the source sequence using only the side information.

If x/M∗ ≤ b ≤ (M∗ −M∗ + 1)/M∗, then the optimal distortion exponent is achieved by ignoring the

side information, and employing the optimal transmission scheme in the absence of side information.

Then, we characterize the optimal distortion exponent for MISO/SIMO/SISO scenarios. In MISO/SIMO,
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Fig. 4. Distortion exponent achieved by BS-JDS with L = 1, 2 and in the limit of infinite layers with respect to the bandwidth
ratio b for a 3×2 MIMO system and a side information quality given by x = 0.5. Numerical results on the achievable distortion
exponent for L = 2 and L = 500 are also included.

i.e., M∗ = 1, we show that BS-JDS achieves the partially informed encoder upper bound, thus charac-

terizing the optimal distortion exponent. This extends the result of [9] to the case with time-varying side

information. For SISO, i.e., M∗ = M∗ = 1, HDA-WZ also achieves the optimal distortion exponent. For

the general MIMO setup, the proposed schemes do not meet the upper bound for b > 1/M∗. Nevertheless,

multi-layer transmission schemes perform close to the upper bound, especially in the high bandwidth

ratio regime.

A. Optimal distortion exponent for low bandwidth ratios

First, we consider the MMSE reconstruction of Xm only from the side information sequence Y m

available at the receiver, i.e., X̂i = E[Xi|Yi]. The source sequence is reconstructed with distortion

Dno(γ) , (1 + ρsγ)−1, and averaging over the side information realizations, the expected distortion

is given by EDno = E[Dno(Γ)]. The achievable distortion exponent is found as ∆no(x, b) = x, which

meets the upper bound ∆up(x, b) for 0 ≤ b ≤ x/M∗, characterizing the optimal distortion exponent.
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Lemma 4. For 0 ≤b≤ x/M∗, the optimal distortion exponent ∆∗(b, x)=x is achieved by simple MMSE

reconstruction of Xm from the side information sequence Y m.

Additionally, Theorem 1 reveals that in certain regimes, the distortion exponent is upper bounded by

∆MIMO(b), the distortion exponent upper bound in the absence of side information at the destination

[9, Theorem 3.1]. In fact, for x/M∗ ≤ b ≤ M∗ −M∗ + 1, we have ∆up(x, b)=bM∗. This distortion

exponent is achievable for b satisfying x/M∗ ≤ b ≤ (M∗−M∗+1)/M∗ by ignoring the side information

and employing the optimal scheme in the absence of side information, which is given by the multi-

layer broadcast transmission scheme considered in [25]. The same distortion exponent is achievable by

considering BS-JDS ignoring the side information, i.e., ∆∗(b, x) = ∆̂L
bs(b, 0). If x/M∗ ≤ b ≤ 1/M∗, the

optimal distortion exponent is also achievable by HDA-S and ∆∗(b, x) = ∆h(b, x).

Lemma 5. For x/M∗ ≤ b ≤ (M∗−M∗+1)/M∗, the optimal distortion exponent is given by ∆∗(b, x) =

bM∗, and is achievable by ignoring the side information sequence Y m and using BS-JDS. If x/M∗ ≤

b ≤ 1/M∗ the distortion exponent is also achievable by HDA-S.

In large bandwidth ratio regimes, i.e., for b > (M∗ −M∗ + 1)/M∗, transmission schemes exploiting

both the channel output and the side information sequence are required.

B. Optimal distortion exponent for MISO/SIMO/SISO

We first particularize the upper bounds on the distortion exponent to M∗ = 1. The fully informed

encoder upper bound is found as

∆inf(b, x) = x+ min{b,M∗},

and the partially informed encoder upper bound is given by

∆∗up(b, x) =


max{x, b} for b ≤ max{M∗, x},

M∗ + x
(
1− M∗

b

)
for b > max{M∗, x}.

Notice that as the bandwidth ratio increases, the partially informed encoder upper bound ∆∗up(b, x)
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Fig. 5. Distortion exponent ∆(b, x) with respect to the bandwidth ratio b for a 4 × 1 MISO system and a side information
quality given by x = 0.5.

converges to the fully informed encoder upper bound ∆inf(x, b), i.e., we have ∆inf(∞, x) = ∆∗up(∞, x) =

x+M∗.

Now we particularize the proposed lower bounds to M∗ = 1. The distortion exponent of SSCC and

JDS is given by

∆j(b, x) = max

{
x, b

x+M∗

b+M∗

}
,

while for uncoded transmission we have

∆u(b, x) =


x if b < 1,

max{1, x} if b ≥ 1.

Note that for b = 1, uncoded transmission meets ∆∗up(b, x) = max{1, x}, while SSCC and JDS are both

suboptimal. This observation is valid for general MIMO channels, as well.

The following distortion exponent is achievable by HDA-S for x ≤ b ≤ 1, and by HDA-WZ for b > 1,
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Fig. 6. Distortion exponent in SISO channels as a function of b for x = 0.4.

in the MISO/SIMO setup.

∆h(b, x) =


max{x, b} for b ≤ 1,

max{x, M
∗+(b−1)(M∗+x)
M∗+b−1 } for b > 1.

As seen in Section VII-A, HDA-S meets the partially informed upper bound for b ≤ 1. HDA-WZ is in

general suboptimal.

For the multi-layer transmission schemes, the distortion exponent acheivable by LS-JDS is given by

∆∗ls(b, x) = x+M∗
(

1− e−
b(1−κ∗)
M∗

)
, κ∗=

M∗

b
W

(
e

b

M∗ x

M∗

)
.

As for BS-JDS, considering the achievable rate in Corollary 1, this scheme meets the partially informed

encoder lower bound in the limit of infinite layers, i.e., ∆̂∞bs (b, x) = ∆∗up(b, x). This fully characterizes

the optimal distortion exponent in the MISO/SIMO setup, as stated in the next theorem.
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Fig. 7. Distortion exponent ∆(b, x) with respect to the bandwidth ratio b for a 2 × 2 MIMO system and a side information
quality given by x = 0.5.

Theorem 8. The optimal distortion exponent ∆∗(b, x) for MISO/SIMO systems is given by

∆∗(b, x) =


max{x, b} for b ≤ max{M∗, x},

M∗ + x
(
1− M∗

b

)
for b > max{M∗, x},

and is achieved by BS-JDS in the limit of infinite layers.

In Figure 5 we plot the distortion exponent for a MISO/SIMO channel with M∗ = 4 and x = 0.5, with

respect to the bandwidth ratio b. We observe that, as given in Theorem 8, BS-JDS achieves the optimal

distortion exponent. As discussed in Section V-E, single-layer schemes perform poorly as the bandwidth

ratio increases. We observe that HDA-WZ outperforms JDS in all regimes, and, although it outperforms

the multi-layer LS-JDS for low b values, LS-JDS achieves larger distortion exponents than HDA-WZ for

b ≥ 3.

In Figure 6, we plot the proposed upper and lower bounds on the distortion exponent for the SISO

case and x = 0.4. We observe that the performance of the schemes is similar to the MISO/SIMO

case. However, the distortion exponent values achievable by LS-JDS are lower than those achievable by
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Fig. 8. Distortion exponent ∆(b, x) with respect to the bandwidth ratio b for a 4 × 4 MIMO system and a side information
quality given by x = 3.

HDA-WZ for all b ≥ 0.4. HDA-WZ achieves the optimal distortion exponent for b ≥ 1.

Lemma 6. The optimal distortion exponent for SISO channels is achieved by BS-JDS, HDA-WZ and

HDA-S.

C. General MIMO

Here, we consider the general MIMO channel with M∗ > 1. Figure 7 shows the upper and lower

bounds on the distortion exponent derived in the previous sections for a 2 × 2 MIMO channel with

x = 0.5. First, it is observed that the optimal distortion exponent is achieved by HDA-S and BS-JDS

with infinite layers for b ≤ 0.5, as expected from Section VII-A, while the other schemes are suboptimal

in general. Uncoded transmission also achieves the optimal distortion exponent at b = 0.5. This holds

for any MIMO system as stated in the following lemma.

Lemma 7. Uncoded transmission achieves the optimal distortion exponent for b = 1/M∗.

For 0.5 < b . 2.4, HDA-WZ is the scheme achieving the largest distortion exponent, and outperforms
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Fig. 9. Distortion exponent ∆(b, x) with respect to the bandwidth ratio b for a 4 × 4 MIMO system and a side information
quality given by x = 3.

BS-JDS, and in particular, when the performance of BS-JDS reduces to the performance of JDS, since

HDA-WZ outperforms JDS in general. For larger b values, the largest distortion exponent is achieved by

BS-JDS. Note that for b ≥ 4, ∆∗bs(b, 0.5) is very close to the partially informed encoder lower bound.

We also observe that for b & 2.4 LS-JDS outperforms HDA-WZ, but it is worse than BS-JDS. This is

not always the case, as will be seen next.

In Figure 8, we plot the upper and lower bounds proposed for a 4× 4 MIMO channel with x = 3. We

note that, for b ≤ max{1, x}/M∗, ∆∗(b, 3) = 3, which is achievable by using only the side information

sequence at the decoder. For this setup, LS-JDS achieves the best distortion exponent for intermediate b

values, outperforming both HDA-WZ and BS-JDS. Again, in the large bandwidth ratio regime, BS-JDS

achieves the best distortion exponent values, and performs close to the upper bound. We note that for

high side information quality, the difference in performance between JDS and HDA-WZ decreases. This

is in line with the observation that, for x ≥ 1/M∗, uncoded transmission does not provide any distortion

exponent improvement with respect to simple MMSE estimation form the side information sequence.

Comparing Figure 7 and Figure 8, we observe that, when the side information quality is high, digital
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schemes better exploit the degrees-of-freedom of the system than analog schemes.

In Figure 9 we plot the upper and lower bounds for a 7×7 MIMO channel with x = 3. In comparison

with Figure 8, as the number of antennas increases the difference in performance between JDS and

HDA-WZ decreases. This seems to be the case also between BS-JDS and LS-JDS in the high bandwidth

regime. However, LS-JDS significantly outperforms LS-JDS for intermediate b values. We also observe

that the two proposed upper bounds get closer to each other as the minimum number of antennas M∗

increases.

VIII. CONCLUSIONS

We have studied the high SNR distortion exponent when transmitting a Gaussian source over a time-

varying fading MIMO channel in the presence of time-varying correlated side information at the receiver.

We have assumed a block-fading model for both the channel and the side information states, and perfect

state information about the time-varying channel and the side information states at the receiver, while

the transmitter has only a statistical knowledge. We have derived two upper bounds on the distortion

exponent, as well as lower bounds based on separate source and channel coding, joint decoding, uncoded

transmission and hybrid digital-analog transmission. We have proposed multi-layer transmission schemes

based on progressive transmission with joint decoding as well as superposition with joint decoding. We

have considered the effects of the bandwidth ratio and the side information quality on the distortion

exponent, and shown that the multi-layer transmission scheme with superposition transmission meets the

upper bound in MISO/SIMO/SISO channels, solving the joint source channel coding problem in the high

SNR regime. For general MIMO channels, we have characterized the optimal distortion exponent in the

low bandwidth regime and shown that the multi-layer scheme based on superposition performs very close

to the upper bound in the large bandwidth ratio regime.

APPENDIX I

PROOF OF THEOREM 1

The exponential integral can be bounded as follows [26, p.229, 5.1.20]:

1

2
ln

(
1 +

2

t

)
< etE1(t) < ln

(
1 +

1

t

)
, t > 0. (24)
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Next, using the lower bound ln(1 + t) ≥ t
1+t , for t > −1, we have

1

2
ln

(
1 +

2

t

)
>

1

2

2/t

1 + 2/t
=

1

t+ 2
. (25)

Then, ED∗pi in (6) is lower bounded by

ED∗pi(ρ, ρs, b) ≥
∫
H

1

2C(H) + 2ρs
ph(H)dH. (26)

Following [21], the capacity of the MIMO channel is upper bounded as

C(H) = sup
Cu:Tr{Cu}≤Mt

log det

(
I +

ρ

Mt
HCuH

H

)
≤ log det

(
I + ρHHH

)
, (27)

where the inequality follows from the fact that MtI−Cu � 0 subject to the power constraint Tr{Cu} ≤

Mt, and the function log det(·) is nondecreasing on the cone of positive semidefinite Hermitian matrices.

Let λM∗ ≥ · · · ≥ λ1 > 0 be the eigenvalues of matrix HHH , and consider the change of variables

λi = ρ−αi , with α1 ≥ ... ≥ αM∗ ≥ 0. The joint probability density function (pdf) of α , [α1, ..., αM∗ ]

is given by [21]:

pA(α) = K−1
Mt,Mr

(log ρ)M∗
M∗∏
i=1

ρ−(M∗−M∗+1)αi ·

∏
i<j

(ραi − ραj )2

 exp

(
−

M∗∑
i=1

ραi

)
, (28)

where K−1
Mt,Mr

is a normalizing constant.

We define the high SNR exponent of pA(α) as SA(α), that is, we have pA(α)
.
= ρ−SA(α), where

SA(α),


∑M∗

i=1(2i− 1 +M∗ −M∗)αi if αM∗≥0,

∞ otherwise.
(29)
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Then, from (26) and (27) we have

ED∗pi(ρ, ρs, b) ≥
∫
H

1∏M∗
i=1 (1 + ρλi)

b + 2ρs
ph(H)dH

=

∫
α

1∏M∗
i=1 (1 + ρ1−αi)b + 2ρs

pA(α)dα

≥
∫
α+

Gρ(α)pA(α)dα, (30)

where we define

Gρ(α) ,

(
M∗∏
i=1

(
1 + ρ1−αi)b + 2ρs

)−1

,

and the set α+ , {α ∈ RM∗ : 1 ≥ α1 ≥ ... ≥ αM∗ ≥ 0} in (30).

Then, in the high SNR regime we have,

G(α) , lim
ρ→∞

logGρ(α)

log ρ
= lim

ρ→∞

log(ρb
∑M∗
i=1(1−αi)+ + 2ρx)−1

log ρ

=


−x if x > b

∑M∗
i=1(1− αi)+,

−b
∑M∗

i=1(1− αi)+ if x ≤ b
∑M∗

i=1(1− αi)+,

where we have used the exponential equalities 1 + ρ1−αi .= ρ(1−αi)+ , and ρs
.
= ρx.

Therefore, for sufficiently large ρ, we have

ED∗pi(ρ, ρs, b) ≥
∫
α+

exp
(

logGρ(α)

log ρ
log ρ

)
pA(α)dα

.
=

∫
α+

exp (G(α) log ρ) pA(α)dα.

Defining ∆∗pi(b, x) = − limρ→∞
logED∗pi

log ρ , the distortion exponent of the partially informed encoder is

upper bounded by

∆∗pi(b, x) ≤ lim
ρ→∞

1

log ρ
log

∫
α+

exp (G(α) log ρ) pA(α)dα.

From Varadhan’s lemma [27], it follows that the distortion exponent of ED∗pi is upper bounded by the
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solution to the following optimization problem,

∆up(b, x) , inf
α+

[−G(α) + SA(α)]. (31)

In order to solve (31) we divide the optimization into two subproblems: the case when x < b
∑M∗

i=1(1−αi),

and the case when x ≥ b
∑M∗

i=1(1− αi). The solution is then given by the minimum of the solutions of

these subproblems.

If x ≥ b
∑M∗

i=1(1− αi), the problem in (31) reduces to

∆1
up(b, x) = x+inf

α+

M∗∑
i=1

(2i− 1 +M∗ −M∗)αi

s.t.
M∗∑
i=1

(1− αi) ≤
x

b
. (32)

The optimization in (32) can be identified with the DMT problem in (1) for a multiplexing gain of r = x
b .

Next, we give an explicit solution for completeness.

First, if bM∗ ≤ x, the infimum is given by ∆1
up(b, x) = x for α∗ = 0. Then, for k ≤ x

b ≤ k + 1, for

k = 0, ...,M∗ − 1, i.e., x
k+1 ≤ b ≤

x
k , the infimum is achieved by

α∗i =


1 for i = 1, ...,M∗ − k − 1,

k + 1− x
b i = M∗ − k,

0 for i = M∗ − k + 1, ...,M∗.

Substituting, we have, for k = 0, ...,M∗ − 1,

∆1
up(b, x) = x+ Φk −Υk

(x
b
− k
)

= x+ d∗
(x
b

)
,

where Φk and Υk are defined as in (3).

Now we solve the second subproblem with x < b
∑M∗

i=1(1 − αi). Since 1 ≥ α1 ≥ ... ≥ αM∗ ≥ 0 we
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can rewrite (31) as

∆2
up(b, x) = inf

α+
bM∗ −

M∗∑
i=1

αiφ(i)

s.t.
M∗∑
i=1

αi < M∗ −
x

b
, (33)

where we have defined φ(i) , [b− (2i− 1 +M∗ −M∗)]. Note that φ(1) > · · · > φ(M∗).

First, we note that for bM∗ < x there is no feasible solution due to the constraint in (33).

Now, we consider the case x ≤ M∗(1 + M∗ − M∗). If x
M∗
≤ b < 1 + M∗ − M∗, all the terms

φ(i) multiplying αi’s are negative, and, thus, the infimum is achieved by α∗ = 0, and is given by

∆2
up(b, x) = bM∗. If 1 + M∗ −M∗ ≤ b < 3 + M∗ −M∗, then φ(1) multiplying α1 is positive, while

the other φ(i) terms are negative. Then α∗i = 0 for i = 2, ...,M∗. From (33) we have α1 ≤ M∗ − x
b . If

b ≥ x
M∗−1 , the right hand side (r.h.s.) of (33) is greater than one, and smaller otherwise. Then, we have

α∗1 =


1 if b ≥ x

M∗−1 ,

M∗ − x
b if b < x

M∗−1 .

Note that α∗1 ≥ 0 since b > x
M∗

.

When 2k − 1 + M∗ −M∗ ≤ b < 2k + 1 + M∗ −M∗ for k = 2, ...,M∗ − 1, the coefficients φ(i),

i = 1, ..., k, associated with the first k αi terms are positive, while the others remain negative. Then,

α∗i = 0, for i = k + 1, ...,M∗. (34)

Since φ(i), i = 1, ..., k, are positive and φ(1) > · · · > φ(k), we have α∗i = 1 for i = 1, ..., k − 1, and

the constraint becomes αk < M∗ − (k − 1) − x
b . If b ≥ x

M∗−k , then the r.h.s. is greater than one, and

smaller otherwise. In order for the solution to be feasible, we need αk ≥ 0, that is, M∗−(k−1)− x
b ≥ 0.

Then we have

α∗k =


1 if b ≥ x

M∗−k ,

M∗ − (k − 1)− x
b if x

M∗−(k−1) ≤ b <
x

M∗−k .

(35)



40

If b < x
M∗−(k−1) , the solution in (35) is not feasible. Instead, we have α∗k = 0, since φ(k) < φ(k− 1),

α∗i = 0 for i = k + 1, ...,M∗, and α∗i = 1, for i = 1, ..., k − 2. Then, the constraint in (33) is given by

αk−1 ≤M∗ − (k − 2)− x
b . Since b < x

M∗−(k−1) , the r.h.s. is always smaller than one. For the existence

of a feasible solution, the r.h.s. is required to be greater than zero. Therefore, we have

α∗k−1 = M∗ − (k − 2)− x

b
, if

x

M∗ − (k − 2)
≤ b < x

M∗ − (k − 1)
.

In general, iterating this procedure, for

x

M∗ − (j − 1)
≤ b < x

M∗ − j
, j = 1, ..., k,

we have

α∗i =


1 for i = 1, ..., j − 1,

M∗ − (j − 1)− x
b for i = j,

0 for i = j + 1, ...,M∗.

(36)

Note that for the case j = 1, we have α1 = M∗ − x
b , which is always feasible.

We now evaluate (33) with the optimal α∗ if 2k− 1 +M∗ −M∗ ≤ b < 2k+ 1 +M∗ −M∗ for some

k ∈ {2, ...,M∗ − 1}. For b ≥ x
M∗−k , we have α1 = · · · = αk = 1 and αk+1 = · · · = αM∗ = 0, and then

∆2
up(b, x) =

M∗∑
i=1

min{b, 2i− 1 +M∗ −M∗} = ∆MIMO(b).

For x
M∗
≤ b ≤ x

M∗−k , substituting (36) into (33) we have

∆2
up(b, x) = x+ (M∗ −M∗ − 1 + j)(j − 1)

+
(
M∗ − (j − 1)− x

b

)
(2j − 1 +M∗ −M∗),

where

x

M∗ − (j − 1)
≤ b ≤ x

M∗ − j
, for some j ∈ {1, ..., k}.
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Note that with the change of index j = M∗ − j′, we have, after some manipulation,

∆2
up(b, x) = x+ (M∗ − j′)(M∗ − j′)−

(x
b
− j′

)
(M∗ +M∗ − 2j′ − 1),

in the regime

x

j′ + 1
≤ b < x

j′
, j′ = M∗ − k, ...,M∗ − 1.

This is equivalent to the value of the DMT curve in (2) at multiplexing gain r = x
b . Then, for

x
M∗
≤ b < x

M∗−k we have

∆2
up(b, x) = x+ d∗

(x
b

)
.

If b ≥M∗ +M∗ − 1, the infimum is achieved by α∗i = 1, for i = 1, ...,M∗ − 1, and α∗M∗ = 1− x
b if

b ≥ x. If b < x, this solution is not feasible, and the solution is given by (36). Therefore, in this regime

we also have

∆2
up(b, x) = x+ d∗

(x
b

)
.

Putting all these results together, for x ≤M∗(M∗ −M∗ + 1) we have

∆2
up(x, b) =



bM∗ for x
M∗
≤ b < M∗ −M∗ + 1,

x+ d∗
(
x
b

)
for M∗ −M∗ + 1 ≤ b < x

M∗−k ,

∆MIMO(b) for x
M∗−k ≤ b < M∗ +M∗ − 1,

x+ d∗
(
x
b

)
for b ≥M∗ +M∗ − 1,

where k ∈ {1, ...,M∗ − 1} is the integer satisfying 2k − 1 +M∗ −M∗ ≤ b < 2k + 1 +M∗ −M∗.

Now, we solve (33) for M∗(M∗ −M∗ + 1) ≤ x < M∗(M
∗ + M∗ − 1). Let l ∈ {2, ...,M∗} be the

integer satisfying M∗(2(l − 1) − 1 + M∗ −M∗) ≤ x < M∗(2l − 1 + M∗ −M∗). The first interval of

b in which a feasible solution exists is given by x
M∗
≤ b < 2l − 1 + M∗ −M∗. From the sign of the

coefficients φ(i) in this interval we have α∗i = 0 for i = (l + 1), ...,M∗, and α∗i = 1 for i = 1, ..., l − 1.
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Substituting, the constraint becomes αl < M∗− (l−1)− x
b . If b > x

M∗−l the r.h.s. is larger than one, and

α∗l = 1. On the contrary, if b ≤ x
M∗−l , it is given by α∗l = M∗− (l− 1)− x

b if b > x
M∗−(l−1) , so that the

r.h.s. of the constraint is larger than zero. Iterating this procedure, the solution for all b values is found

following the techniques that lead to (36). In general, for 2k− 1 +M∗−M∗ ≤ b < 2k+ 1 +M∗−M∗,

k = l, ...,M∗ − 1 and

x

M∗ − (j − 1)
≤ b < x

M∗ − j
, j = 1, ..., k,

we have

α∗i =


1 for i = 1, ..., j − 1,

M∗ − (j − 1)− x
b for i = j,

0 for i = j + 1, ...,M∗.

(37)

The distortion exponent is now obtained similarly to the case x ≤M∗(M∗−M∗+ 1) in each interval

2k−1+M∗−M∗ ≤ b < 2k+1+M∗−M∗ with k = l, ...,M∗−1 instead of k = 1, ...,M∗−1, and thus, we

omit the details. Putting all together, if x satisfies M∗(2(l−1)−1+M∗−M∗) ≤ x < M∗(2l−1+M∗−M∗),

for some l ∈ {2, ...,M∗}, we have

∆2
up(x, b) =



x+ d∗
(
x
b

)
for x

M∗
≤ b < 2l − 1 +M∗ −M∗,

x+ d∗
(
x
b

)
for 2l − 1 +M∗ −M∗ ≤ b < x

M∗−k ,

∆MIMO(b) for x
M∗−k ≤ b < M∗ +M∗ − 1,

x+ d∗
(
x
b

)
for b ≥M∗ +M∗ − 1.

Note that in the case l = M∗, we have ∆2
up(x, b) = x+ d∗

(
x
b

)
for any b value.

Finally, the case x ≥M∗(M∗+M∗− 1) can be solved simil. Notice that if α∗i = 1, i = 1, ...,M∗− 1

we have the constraint αM∗ ≤ 1− x
b , that is, we never have the case α∗M∗ = 1. Then, the optimal α∗i are

given as in (36), and we have

∆2
up(x, b) = x+ d∗

(x
b

)
for

x

M∗
≤ b.
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Now, ∆up(b, x) is given by the minimum of ∆1
up(b, x) and ∆2

up(b, x). First, we note that ∆2up(b, x) has

no feasible solution for bM∗ ≤ x, and we have ∆up(b, x) = ∆1
up(b, x) = x in this region. For bM∗ > x,

both solutions ∆1
up(b, x) and ∆2

up(b, x) coincide except in the range x
M∗−k ≤ b ≤M

∗+M∗−1. We note

that ∆1
up(b, x) in (32) is linear and increasing in α, and hence, the solution is such that the constraint is

satisfied with equality, i.e., x =
∑M∗

i=1 b(1−αi). That is, ∆2
up(b, x) ≤ ∆1

up(b, x) whenever both solutions

exist in the same α region. Then, the minimizing α will be one such that either ∆1
up(b, x) < ∆2

up(b, x),

or the one arbitrarily close to the boundary x = b
∑M∗

i=1(1 − αi)
+, where ∆1

up(b, x) = ∆2
up(b, x).

Consequently, min{∆1
up(b, x),∆2

up(b, x)} = ∆1
up(b, x), whenever they are defined in the same region.

Putting all the results together we complete the proof.

APPENDIX II

PROOF OF THEOREM 2

To derive the distortion exponent of SSCC we first study the exponential behavior of EΓ[Dd(R,Γ)]

in (9). We consider the change of variables γ = ρ−β , with pdf pB(β) given as in (28) and SB(β) = β,

for β ≥ 0, and R = r log ρ. Then,

EΓ[Dd(R,Γ)] =

∫
1

γρs + 22R
pΓ(γ)dγ

=

∫
exp(log(ρx−β + ρ2r)−1)pB(β)dβ.

In the high SNR regime, we have

EΓ[Dd(r log ρ,Γ)]
.
=

∫
R

ρ−max{(x−β)+,2r}pB(β)dβ,

where we have used (1 + ρx−β + ρ2r)−1 .
= ρ−max{(x−β)+,2r}. Applying Varadhan’s lemma we have

EΓ[Dd(R,Γ)]
.
= inf

β∈R+
max{(x− β)+, 2r}+β = max{x, 2r}.
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Then, for a family of codes with rate b
2Rc = b

2rc log ρ, (9) is exponentially equivalent to

EDs(brc log ρ) = (1− Po(H))EΓ[Dd(brc/2 log ρ,Γ)] + Po(H)EΓ[Dd(0,Γ)]

.
= (1− ρ−d∗(rc))ρ−max{x,brc} + ρ−d

∗(rc)ρ−x

.
= ρ−max{x,brc} + ρ−(d∗(rc)+x)

.
= ρ−min{max{x,brc},d∗(rc)+x},

where we have used that the outage probability is exponentially equivalent to the probability of error

[21], i.e., Po(H)
.
= ρ−d

∗(rc), and d∗(rc) is the DMT curve characterized in (2).

The best distortion exponent achievable by SSCC, ∆s(b, x), is found by maximizing over rc as follows

∆s(b, x) , max
rc≥0
{min{max{x, brc}, x+ d∗(rc)}}. (38)

The maximum achieved when the two terms inside min{·} are equal, i.e., max{brc, x} = x+ d∗(rc).

We chose a rate rc such that brc > x and rc < M∗, as otherwise, the solution is readily given by

∆s(b, x) = x. Note that for bM∗ ≤ x this is never feasible, and thus, ∆s(b, x) = x, and if x ≥ b ·d∗(M∗),

the intersection is always at brc = x. Assuming k ≤ rc ≤ k+1, k = 0, ...,M∗−1, the optimal rc satisfies

at brc = d∗(rc) + x, or, equivalently, brc = x+ Φk − (rc − k)Υk, and we have

r∗c =
Φk + kΥk + x

Υk + b
, ∆s(b, x) = br∗c = b

Φk + kΥk + x

Υk + b
.

Since solution r∗c is feasible whenever k < r∗c ≤ k + 1, this solution is defined in

b ∈
[

Φk+1 + x

k + 1
,
Φk + x

k

)
, for k = 0, ...,M∗ − 1, (39)

where we have used Φk+1 = Φk − Υk. Notice that, whenever ∆s(b, x) ≤ x in (39), we have br∗c ≤ x,

which is not feasible, and therefore ∆s(b, x) = x. Remember that for bM∗ ≤ x we also have ∆s(b, x) = x.

Putting all these cases together completes the proof of Theorem 2.
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APPENDIX III

PROOF OF THEOREM 3

Applying the change of variables λi = ρ−αi and γ = ρ−β , and considering a rate Rj = rj log ρ,

rj > 0, the outage event in (10) can be written as

Oj =

{
(H, γ) : 1 +

2−ερbrj − 1

γρx + 1
≥

M∗∏
i=1

(1 + ρλi)
b

}

=

{
(α, β) : 1 +

2−ερbrj − 1

ρ(x−β) + 1
≥

M∗∏
i=1

(1 + ρ1−αi)b

}
.

For large ρ, we have

1 + 2−ερbrj−1
ρ(x−β)+1∏M∗

i=1(1 + ρ1−αi)b
.
=

1 + ρbrjρ−(x−β)+

ρb
∑M∗
i=1(1−αi)+

.
= ρ(brj−(x−β)+)+−b

∑M∗
i=1(1−αi)+ .

Therefore, at high SNR, the achievable expected end-to-end distortion for JDS is found as,

EDj(brj log ρ) =

∫
Ocj
Dd(brj/2 log ρ, ρ−β)pA(α)pB(β)dαdβ

+

∫
Oj
Dd(0, ρ

−β)pA(α)pB(β)dαdβ

.
=

∫
Acj
ρ−max{(x−β)+,brj}ρ−(S(α)+β)dαdβ

+

∫
Aj
ρ−(x−β)+ρ−(S(α)+β)dαdβ.

.
= ρ−∆1

j(rj) + ρ−∆2
j(rj)

.
= ρ−min{∆1

j(rj),∆
2
j(rj)}

.
= ρ−∆j(rj), (40)

where Dd(R, γ) is as defined in (8), and we have used Dd(r log ρ, β)
.
= ρ−max{(x−β)+,2r}. We have also

defined the high SNR equivalent of the outage event as

Aj ,

{
(α, β) : (brj − (x− β)+)+ ≥ b

M∗∑
i=1

(1− αi)+

}
.
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We have applied Varadhan’s lemma to each integral to obtain

∆1
j (rj), inf

Acj
max{(x− β)+, brj}+ β + SA(α), (41)

and

∆2
j (rj) , inf

Aj
(x− β)+ + β + SA(α). (42)

Then, the distortion exponent of JDS is found as

∆j(rj) = min{∆1
j (rj),∆

2
j (rj)}. (43)

We first solve (41). We can constrain the optimization to α ≥ 0 and β ≥ 0 without loss of optimality,

since for α, β < 0 we have SA(α) = SB(β) = +∞. Then, ∆1
j (rj) is minimized by α∗ = 0 since this

minimizes SA(α) and enlarges Acj . We can rewrite (41) as

∆1
j (rj) = inf

β≥0
max{(x− β)+, brj}+ β

s.t. (brj − (x− β)+)+ < bM∗.

If brj< (x − β)+, the minimum is achieved by any 0≤β<x − rjb, and thus ∆1
j (rj) = x for x > brj .

If brj ≥ (x− β)+, then

∆1
j (rj) = inf

β≥0
brj + β

s.t. brj − bM∗ < (x− β)+ ≤ brj .

If β > x, the problem is minimized by β∗ = x+ ε, ε > 0, and ∆j(rj) = brj + x+ ε, for rj ≤M∗. For

0 ≤ β ≤ x, we have β∗ = (x − rjb)+, and ∆1
j (rj) = max{brj , x} if brj ≤ bM∗ + x. Putting all these

together, we obtain

∆1
j (rj) = max{brj , x} if brj ≤ x+ bM∗. (44)

If brj > x+ bM∗, Acj is empty, and there is always outage.
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Next we solve the second optimization problem in (42). With β = x, ∆2
j (rj) is minimized and the

range of α is enlarged. Then, the problem to solve reduces to

∆2
j (rj) = inf x+ S(α)

s.t. rj ≥
M∗∑
i=1

(1− αi)+,

which is the DMT problem in (32). Hence, ∆2j(rj , b) = x+ d∗(rj). Bringing all together,

∆j(b, x) = max
rj≥0
{min{max{x, brj}, x+ d∗(rj)}}. (45)

Since d∗(rj) = 0 for rj > M∗, the constraint in (45) can be reduced to 0 ≤ rj ≤ M∗ without loss of

optimality since ∆j(b, x) = x for any rj ≥ M∗. Then, (45) coincides with (38), and thus, SSCC and

JDS achieve the same distortion exponent.

APPENDIX IV

PROOF THEOREM 5

In this Appendix we derive the outage region Oh in (14), and the average distortion expression in (16).

Then, using these we obtain the distortion exponent achieved by HDA-WZ.

A. Outage region for HDA-WZ

From joint typicality arguments similarly to [22], the decoding of W
m

2M∗ is successful with high

probability if

I(W
m

2M∗ ;Xm) <
m

2
Rh < I(W

m

2M∗Tn− m

2M∗ ;VnY m). (46)

For the left hand side (l.h.s.) of (46) we have

I(W
m

2M∗ ;Xm) =

m

2M∗∑
i=1

I(Wi;Xi) =
m

2M∗
I(W;X) = mI(W ;X) <

m

2
Rh, (47)

due to the i.i.d. distribution of the source, Qi and Xi. Note that the l.h.s. of (46) always holds since Rh

is chosen such that Rh
2 = I(W ;X) + ε.
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The r.h.s. of the decoding condition (46) is given by

I(W
m

2M∗Tn− m

2M∗ ;VnY m)
(a)
=

m

2M∗∑
i=1

I(Wi;VW,iYi) +

n∑
i= m

2M∗
+1

I(Ti;VT,i)

=
m

2M∗
I(W;VWY) +

(
n− m

2M∗

)
I(T;VT ), (48)

where (a) follows from the i.i.d. distribution of the implied variables.

Substituting (47) and (48) into (46) and dividing both sides by m/2M∗, we obtain the outage condition

in (14). Next, we evaluate (14) for Gaussian codewords. We readily obtain I(VT ;T) = log
(

det
(
I + ρ

M∗
HH†

))
.

Then, we have I(W;VWY) = H(VWY)−H(VWWY) +H(W). Let G , [W,VW ,Y]H . Since G

is a complex multivariate Gaussian random vector, its differential entropy is given by H(VWWY) =

log((2πe)3M∗ det(CG)), where CG = E[GGH ] is given by

CG =


I + σ2

QI
√
ασ2

QH
H γ

√
ρsI

√
ασ2

QH I + ασ2
QHHH 0

γ
√
ρsI 0 ξI

 ,

with α , ρ/Mt and ξ , 1 + ρsγ. By using properties of the determinant of a block matrix and some

algebra, we have

det(CG) = det
(
I + ασ2

QHHH + ξσ2
QI
)

=

M∗∏
i=1

(
1 + ξσ2

Q +
ρ

M∗
λi

)
.

Similarly, we have

H(VWY) = log

(
(2πe)2M∗ξM∗ det

(
I +

ρ

M∗
HHH

))
,

H(W) = log((2πe)M∗(1 + σ2
Q)M∗),

This completes the characterization of (15).



49

B. Expected distortion achieved by HDA-WZ

We use an MMSE estimator to reconstruct each source block Xi, i = 1, ..., m
2M∗

, with the available

information, which can be modeled by the linear model as follows:
Wi

Vi

Yi

 =


I

0

γI

Xi +


Qi

√
αHQi + Ni

Zi

 .

Let B ,
[
I 0 γI

]H
and Si ,

[
Qi αHQi + Ni Zi

]H
. Then, the distortion for each source block

is found to be given by Tr{D} = 1
M∗

∑M∗
i=1 Tr[I + BCSB

H ]−1, where D is the distortion matrix in the

reconstruction of each block, and

CS , E[SiS
H
i ] =


I

√
αHH 0

√
αH ασ2

QHHH + I 0

0 0 I

 .
Using the block inverse properties, and the singular value decomposition of H we obtain the expected

distortion expression in (16).

C. Distortion exponent achieved by HDA-WZ

The outage region in (14) is given by

Oh=

{
(H, γ) :

(
1 +

1

σ2
Q

)M∗

≥
(

((1 + ρsγ)(1 + σ2
Q))M∗ ·

∏M∗
i=1(1 + ρ

M∗
λi)

bM∗∏M∗
i=1(1 + ρ

M∗
λi + (1 + ρsγ)σ2

Q)

)}
. (49)

Similarly to the analysis of the previous schemes, we consider the change of variables λi = ρ−αi , and

γ = ρ−β , and a rate Rh = rh log ρ, for rh ≥ 0. Then, we start by finding the equivalent outage set in

the high SNR regime. We have,

M∗∏
i=1

(
1 +

ρ

M∗
λi

)bM∗
.
= ρbM∗

∑M∗
i=1(1−αi)+ ,
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and

M∗∏
i=1

(
1 +

ρ

M∗
λi + (1 + ρsγ)σ2

Q

)
.
=

M∗∏
i=1

(
1 + ρ1−αi + (1 + ρx−β)ρ−rh

)
.
= ρ

∑M∗
i=1 max{(1−αi)+,(x−β)+−rh},

where we use σ2
Q = (2Rh−ε− 1)−1 = (2−ερrh − 1)−1 .

= ρ−rh . For the outage condition in (49), we have(
1 + 1

σ2
Q

)M∗∏M∗
i=1(1 + ρ

M∗
λi + (1 + ρsγ)σ2

Q)

((1 + ρsγ)(1 + σ2
Q))M∗

∏M∗
i=1(1 + ρ

M∗
λi)bM∗

.
=
ρM∗rhρ

∑M∗
i=1 max{(1−α)+,(x−β)+−rh}

ρM∗(x−β)+ρbM∗
∑M∗
i=1(1−α)+

.
= ρ

∑M∗
i=1(rh−(x−β)++(1−αi))+−bM∗

∑M∗
1 (1−αi)+ .

Therefore, in the high SNR regime, the set Oh is equivalent to the set given by

Ah ,

{
(α, β)+ :

M∗∑
i=1

(rh − (x− β)+ + (1− αi))+ > bM∗

M∗∑
i=1

(1− αi)

}
.

On the other hand, in the high SNR regime, the distortion achieved by HDA-WZ is equivalent to

Dh(σ2
Q,H, γ) =

1

M∗

M∗∑
i=1

(
1 + ρsγ +

1

σ2
Q

(
1 +

ρ

M∗
λi

))−1

.
=

M∗∑
i=1

(
1 + ρx−β + ρrh+(1−αi)

)−1

.
= ρ−mini=1,...,M∗{max{(x−β)+,rh+1−αi}}

.
= ρ−max{(x−β)+,rh+1−α1},

where the last equality follows since α1 ≥ ... ≥ αM∗ ≥ 0. Then, in the high SNR regime, the expected
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distortion for HDA-WZ is given as

EDh(rh log ρ) =

∫
Och
Dh(σ2

Q,H, γ)ph(H)pΓ(γ)dHdγ

+

∫
Oh
Dd(0, γ)ph(H)pΓ(γ)dHdγ

.
=

∫
Acj
ρ−max{(x−β)+,rh+(1−α1)}pA(α)pB(β)dαdβ

+

∫
Aj
ρ−(x−β)+pA(α)pB(β)dαdβ.

Similarly to the proof of Theorem 3, applying Varadhan’s lemma, the exponent of each integral is

found as

∆1
h(rh) = inf

Ach
max{(x− β)+, rh + 1− α1}+ SA(α) + β,

and

∆2
h(rh) = inf

Ah
(x− β)+ + SA(α) + β, (50)

First we solve ∆1
h(rh). The infimum for this problem is achieved by α∗ = 0 and β∗ = 0, and is given

by

∆1
h(rh) = max{x, rh + 1}, for rh ≤M∗b− 1 + x.

Now we solve ∆2
h(rh) in (50). By letting β∗ = x, the range of α is enlarged while the objective function

is minimized. Thus, the problem reduces to

∆2
h(rh) = inf x+ S(α)

s.t. rh >
bM∗ − 1

M∗

M∗∑
i=1

(1− αi)+.

Again, this problem is a scaled version of the DMT curve in (32). Therefore, we have

∆2
h(rh) = x+ d∗

((
bM∗ − 1

M∗

)−1

rh

)
.
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The distortion exponent is given by optimizing over rh as

∆h(b, x) = max
rh

min{∆1
h(rh),∆2

h(rh)}.

The maximum distortion exponent is obtained by letting ∆1
h(rh) = ∆2

h(rh). We assume rh+1 > x since

otherwise ∆h(b, x) = x, and then, we have rh + 1 = x+ d∗
(

(b− 1
M∗

)−1rh

)
. Let r′h = rh(b− 1

M∗
)−1.

Using (2), for k < r′h ≤ k + 1, k = 0, ...,M∗ − 1, the problem is equivalent to r′h

(
b− 1

M∗

)
+ 1 =

x+ Φk − (r′h − k)Υk, where Φk and Υk are given as in (3). The r′h satisfying the equality is given by

r′∗h =
Φk + kΦk − 1 + x

b− 1
M∗

+ Φk

,

and the corresponding distortion exponent is found as

∆h(b, x) = 1 +
(bM∗ − 1)(Φk + kΥk − 1 + x)

bM∗ − 1 +M∗Υk
,

for

b ∈
[

Φk+1 − 1 + x

k + 1
+

1

M∗
,
Φk − 1 + x

k
+

1

M∗

)
, for k = 0, ...,M∗ − 1.

Note that we have r∗h + 1 > x whenever ∆h(b, x) > x. Otherwise, r∗h is not feasible and ∆h(b, x) = x.

Note also that if x ≥ bM∗, the distortion exponent is given by ∆h(b, x) = x.

APPENDIX V

PROOF OF THEOREM 6

A. Successively refinable codebooks

Consider a successively refinable codebook [23] at rate b
2LRl = I(X;Wl|W l−1

1 ) + ε/2 for each layer.

We have

I(X;Wl|W l−1
1 )

(a)
= I(X;W l

1)− I(X;W l−1
1 )

(b)
= I(X;Wl)− I(X;Wl−1), (51)
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where (a) is due to the chain rule, and (b) holds form the Markov chain X −Wl −Wl−1 − · · · −W1.

We have

l∑
i=1

(
b

2L
Ri −

ε

2

)
=

l∑
i=1

I(X;Wi|W i−1
1 )

(a)
=

l∑
i=1

I(X;Wi)− I(X;Wi−1)

= I(X;Wl)

=
1

2
log

(
1 +

1∑L
i=l σ

2
i

)
, l = 1, ..., L, (52)

where (a) follows from (51) and W0 = ∅ for the case l = 1.

B. Distortion exponent achievable by LS-JDS

In this section we obtain the distortion exponent for LS-JDS. Let us define R̄l1 ,
∑l

i=1Ri. First, we

consider the outage event. For the successive refinement codebook the l.h.s. of (18) is given by

I(X;Wl|W l−1
1 , Y )

(a)
= I(X;Wl|Y )− I(X;Wl−1|Y )

(b)
= H(Wl|Y )−H(Ql)−H(Wl−1|Y ) +H(Ql−1)

(c)
=

1

2
log

(∑L
i=l−1 σ

2
i∑L

i=l σ
2
i

1 + (1 + γρs)
∑L

j=l σ
2
j

1 + (1 + γρs)
∑L

j=l−1 σ
2
j

)
,

where Ql ,
∑L

i=lQl, and (a) is due to the Markov chain Y −X −WL− ...−W1, and (b) is due to the

independence of Q̄i from X and Y , and finally (c) follows since H(Wl|Y ) = 1
2 log

(∑L
i=l σ

2
i + 1

1+γρs

)
for l = 1, ..., L. We also have

I(X;W1|Y ) =
1

2
log

(
1 +

1

(1 + γρs)
∑L

i=1 σ
2
i

)
.

Substituting (17) into (52), we have

I(X;Wl|W l−1
1 , Y ) =

1

2
log

(
2
∑l
i=1

b

L
Ri−ε + γρs

2
∑l−1
i=1

b

L
Ri−ε + γρs

)
.
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Then, the outage condition in (18) is given by

log

(
2
∑l
i=1

b

L
Ri−ε + γρs

2
∑l−1
i=1

b

L
Ri−ε + γρs

)
≥ b

L
log

M∗∏
i=1

(
1 +

ρ

M∗
λi

)
. (53)

Therefore, in the high SNR regime, we have, for l = 1, ..., L

2
∑l
i=1( b

L
Ri−ε) + γρs

2
∑l−1
i=1( b

L
Ri−ε) + γρs

.
=
ρ
∑l
i=1

b

L
ri + ρx−β

ρ
∑l−1
i=1

b

L
ri + ρx−β

(54)

.
=
ρ
∑l
i=1

b

L
ri−(x−β) + 1

ρ
∑l−1
i=1

b

L
ri−(x−β) + 1

.
=
ρ(
∑l
i=1

b

L
ri−(x−β))+

ρ(
∑l−1
i=1

b

L
ri−(x−β))+

,

and

b

L
log

M∗∏
i=1

(
1 +

ρ

M∗
λi

)
.
= ρ

b

L

∑M∗
i=1(1−αi)+ .

The outage set (18) in the high SNR regime is equivalent to

Alsl ,

{
(α, β) :

b

L

M∗∑
i=1

[(1− αi)+ <

(
l∑

i=1

b

L
ri − (x− β)

)+

−

(
l−1∑
i=1

b

L
ri − (x− β)

)+
 . (55)

Now, we study the high SNR behavior of the expected distortion. It is not hard to see that (19) is

given by

EDls(R)=

L∑
l=0

EOlsl+1

[
Dd

(
b

2L
R̄l1, γ

)]
− EOlsl

[
Dd

(
b

2L
R̄l1, γ

)]
, (56)

where Ols0 , ∅ and OlsL+1 , RM∗+1. For each term in (56), we have

EOlsl+1

[
Dd

(
b

2L
R̄l1, γ

)]
.
=

∫
Alsl+1

ρ−max{ b
L

∑l
i=1 rl,(x−β)+}ρ−SA(α)ρ−βdαdβ, (57)

EOlsl

[
Dd

(
b

2L
R̄l1, γ

)]
.
=

∫
Alsl

ρ−max{ b
L

∑l
i=1 rl,(x−β)+}ρ−SA(α)ρ−βdαdβ, (58)

where the outage set in the high SNR regime is given by (55).

Applying Varadhan’s lemma to (57), the exponential behavior of (57) for l = 0, ..., L− 1, is found as
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the solution to

∆̃+
l , inf

Alsl+1

max{b/Lr̄l1, (x− β)+}+ SA(α) + β,

where we define r̄l1 ,
∑l

i=1 ri. Similarly, applying Varadhan’s lemma to (58), the exponential behavior

of (58) for l = 0, ..., L− 1 is given by

∆̃l , inf
Alsl

max{b/Lr̄l1, (x− β)+}+ SA(α) + β.

Since r1 ≤ r2 ≤ · · · ≤ rL we have Alsl ⊆ Alsl+1, and therefore ∆̃l ≥ ∆̃+
l . Then, from (56) we have

EDls(R)
.
=

L∑
l=0

ρ−∆̃+
l − ρ−∆̃l

.
=

L∑
l=0

ρ−∆+
l .

We define ∆ls
l (r) , ∆̃+

l , where r , [r1, ..., rL]. Then, the distortion exponent of LS-JDS is given as

follows:

∆∗ls(b, x) = max
r

min ∆ls
l (r).

For l=0, i.e., no codeword is successfully decoded, we have

∆ls
0 (r) = inf(x− β)+ + β + SA(α)

s.t.
b

L

M∗∑
i=1

(1− αi)+ <

(
b

L
r1 − (x− β)

)+

.

The infimum is achieved by β = x and using the DMT in (1), we have

∆ls
0 (r) = x+ d∗ (r1) .

The distortion exponent when l layers are successfully decoded is found as

∆ls
l (r) = inf max

{
b

L
r̄l1, (x− β)+

}
+ β + SA(α) (59)

s.t.
b

L

M∗∑
i=1

(1− αi)+ <

(
b

L
r̄l+1

1 − (x− β)

)+

−
(
b

L
r̄l1 − (x− β)

)+

.
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If b
L r̄

l
1 ≥ x, the infimum of (59) is obtained for β∗ = 0 and

∆ls
l (r) = inf

b

L
r̄l1 + SA(α) (60)

s.t.
M∗∑
i1

(ξl − αi)+ < rk+1.

Using the DMT in (1), (60) is minimized as

∆ls
l (r) =

b

L
r̄l1 + d∗ (rl+1) .

If b
L r̄

l
1 ≤ x, we have that the minimum of (59) is achieved by β∗ =

(
x− b

L r̄
l
1

)+
if b

L r̄
l
1 > (x − β)

and is given by

∆ls
l (r) = x+ d∗ (rl+1) .

If b
L r̄

l
1 ≤ (x− β) < b

L r̄
l+1
1 , the optimization problem in (59) is equivalent to

∆ls
l (r) = inf(x− β)+ + β + SA(α) (61)

s.t.
b

L

M∗∑
i=1

(1− αi)+ <

(
b

L
rl+1

1 − (x− β)

)+

,

b

L
r̄l1 ≤ (x− β) <

b

L
r̄l+1

1 .

The infimum of (61) is achieved by the largest β, since increasing β enlarges the range of α. Then,

β∗ = (x− b
L r̄

l
1)+, and we have,

∆ls
l (r) = x+ d∗ (rl+1) .

Finally, if b
L r̄

l+1
1 ≤ (x−β), there are no feasible solutions for (59). Therefore, putting all together we

have

∆ls
l (r) = inf max

{
b

L
r̄l1, x

}
+ d∗(rl+1).
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Similarly, at layer L, the infimum is achieved by α∗ = 0 and β∗ = 0 and is given by

∆ls
L (r) = max

{
b

L
r̄L1 , x

}
, for rL ≤M∗.

Note that the condition on rL always holds.

C. Solution of the distortion exponent

Assume that for a given layer l̂ we have r̄l̂−1
1

b
L ≤ x ≤ r̄l̂1

b
L . Then, ∆ls

l (r) = x + d(rl+1) for l =

0, ..., l̂−1. Using the KKT conditions, the maximim distortion exponent is obtained when all the distortion

exponents are equal.

From ∆ls
0 (r) = · · · = ∆ls

l̂−1
(r) we have r1 = · · · = rl̂, and thus, r̄l̂1 = l̂r1. Then, the exponents are

given by

∆ls
0 (r) = x+ d∗(r1)

∆ls
l̂

(r) = b
l̂

L
r1 + d∗(rl̂+1)

· · ·

∆ls
L−1(r) = b

l̂

L
r1 + b

1

L
r̄L−1

l̂+1
+ d∗(rL)

∆ls
L (r) = b

l̂

L
r1 + b

1

L
r̄L
l̂+1
.

Equating all these exponents, we have

b
1

L
rL = d∗(rL)

b
1

L
rL−1 + d(rL) = d∗(rL−1)

· · ·

b
1

L
rl̂+1 + d∗(rl̂+2) = d∗(rl̂+1)

b
l

L
r1 + d∗(rl̂+1) = d∗(r1) + x.

See Figure 10(a) for a geometric interpretation of the rate allocation for LS-JDS satisfying the above
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(a) Rate allocation for the source layers of LS-JDS illustrated
on DMT curve of the MIMO channel.

(b) The DMT curve of an Mt × Mr MIMO system is
composed of M∗ line segments, of which the i-th one is
shown in the figure.

Fig. 10. Geometrical interpretation of the LS-JDS rate allocation and the DMT curve.

equalities: we have L− l̂ straight lines of slope b/L and each line intersects in the y axis at a point with

the same ordinate as the intersection of the previous line with the DMT curve. The more layers we have

the higher the distortion exponent of LS-JDS can climb. The remaining l̂ layers allow a final climb of

slope l̂b/L. Note that the higher l̂, the higher the slope but the lower the starting point d∗(rl̂+1).

Next, we adapt Lemma 3 from [9] to our setup. Let q be a line with equation y = −α(t −M) for

some α > 0 and M > 0 and let qi = 1, ..., L be the set of lines defined recursively from L to 1 as

y = (b/L)t+ di+1, where b > 0, dL+1 , 0, and di is the y component of the intersection of qi with q.

Then, sequentially solving the intersection points for i = l̂ + 1, ..., L we have:

di − di+1 = M
b

L

(
α

α+ b/L

)L−i+1

.
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Summing all the terms for i = l̂ + 1, ..., L we obtain

di = Mα

[
1−

(
α

α+ b/L

)L−i+1
]
.

In the following we consider a continuum of layers, i.e., we let L→∞. Let l̂ = κL be the numbers

of layers needed so that bl̂/Lr1 = bκr1 = x, that is, from l = 1 to l = κL.

When M∗ = 1, the DMT curve is composed of a single line with α = M∗ and M = 1. In that case,

with layers from κL+ 1 to L the distortion exponent increases up to

d∗(rLκ+1) = Mα

[
1−

(
α

α+ b/L

)L(1−κ)
]
.

In the limit of infinite layers, we obtain

lim
L→∞

d∗(rLκ+1) = Mα
(

1− e−
b(1−κ)
α

)
.

We still need to determine the distortion achieved due to the climb with layers from l = 1 to l = κL

by determining r1, which is found as the solution to ∆ls
0 (r) = ∆ls

Lκ(r), i.e.,

bκr1 + d∗(rLκ+1) = x− α(r1 −M), (62)

Since x = bκr1, r1 = x/bκ, and from (62) we get to

d∗(rLκ+1) = −α
( x
bκ
−M

)
,

which, in the limit of infinite layers, solves for

κ∗ =
M∗

b
W

(
e

b

M∗ x

M∗

)
,

where W(z) is the Lambert W function, which gives the principal solution for w in z = wew. The

distortion exponent in the MISO/SIMO case is then found as

∆∗ls(b, x) = x+M∗
(

1− e−
b(1−κ∗)
M∗

)
.
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For MIMO channels, the DMT curve is formed by M∗ linear pieces, each between M∗ − k and

M∗ − k + 1 for k = 1, ...,M∗. From the value of the DMT at M∗ − k to the value at M∗ − k + 1,

there is a gap of M∗ −M∗ + 2k − 1 in the y abscise. Each piece of the curve can be characterized by

y = −α(t−M), where for the k-th interval we have α = φk and M = Mk as in (20). See Figure 10(b)

for an illustration.

We will again consider a continuum of layers, i.e., we let L→∞, and we let l = Lκ be the number

of lines required to have bκr1 = x. Then, for the remaining lines from l+ 1 to L, let L(1− κ)κk be the

number of lines with slope b/L required to climb up the whole interval k. Since the gap in the y abscise

from the value at M∗ − k to the value at M∗ − k + 1, is M∗ −M∗ + 2k − 1, climbing the whole k-th

interval with L(1− κ)κk lines requires

dL−L(1−κ)κk = M∗ −M∗ + 2k − 1,

where

dL−L(1−κ)κk = Mα

[
1−

(
α

α+ b/L

)L(1−κ)κk+1
]
.

In the limit we have

lim
L→∞

dL−L(1−κ)κk = Mα
[
1− e−

b(1−κ)κk
α

]
.

Then, each required portion, κk, is found as

κk =
M∗ −M∗ + 2k − 1

b(1− κ)
ln

(
M∗ − k + 1

M∗ − k

)
.

This gives the portion of lines required to climb up the k -th segment of the DMT curve. In the

MIMO case, to be able to go up exactly to the k-th segment with lines from l+ 1 to L we need to have∑k−1
j=1 κj < 1 ≤

∑k
j=1 κj . This is equivalent to the requirement ck−1 < b(1−κ) ≤ ck using ci as defined

in Theorem 6. To climb up each line segment we need κk(1− κ)L lines (layers) for k = 1, ...,M∗ − 1,

and for the last segment climbed we have (1−
∑k−1

j=1 κj)L lines remaining, which gives an extra ascent
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of

Mα

(
1− e−

b(1−κ)(1−
∑k−1
j=1

κj)

α

)
.

Then, we have climbed up to the value

dLκ+1 =

k−1∑
i=1

(M∗ −M∗ + 2i− 1)

+(M∗ − k + 1)(M∗ −M∗ + 2k − 1)

(
1− e−

b(1−κ)(1−
∑k−1
j=1

κj)

M∗−M∗+2k−1

)
.

With the remaining lines, i.e., from l = 1 to l = κL, the extra climb is given by solving ∆ls
0 (r) = ∆ls

κL(r),

i.e.,

x+ d∗(r1) = bκr1 + dLκ+1.

The diversity gain d∗(r1) at segment k is given by

d∗(r1) = −α(r1 −M) +

k−1∑
i=1

(M∗ −M∗ + 2i− 1).

Since we have bκr1 = x, this equation simplifies to

d∗
( x
bκ

)
= dLκ+1.

Therefore, using ck−1 , b(1− κ)
∑k−1

j=1 κj , we solve κ from

−α
( x
bκ
−M

)
= Mα

(
1− e−

b(1−κ)−ck−1

α

)
,

and find

κ∗ =
α

b
W

(
e
b−ck−1

α x

Mα

)
.

The range of validity for each k is given by ck−1 < b(1 − κ) ≤ ck. Since for a given c, the solution
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to c = b(1− κ∗) is found as

b =
xeck−1−c

M
+ c,

when c = ck−1, we have

b >
x

M
+ ck−1 = ck−1 +

x

M∗ − k + 1
.

When c = ck, since ck−1 − ck = α ln(M/(M∗ − k)), we have

b ≤ xeck−1−ck

M
+ ck = ck +

x

M∗ − k
.

Putting all together, we obtain the condition of the theorem and the corresponding distortion exponent.

APPENDIX VI

PROOF OF THEOREM 7

We consider the usual change of variables, λi = ρ−αi and γ = ρ−β . Let rl be the multiplexing gain

of the l-th layer and r , [r1, ..., rL], such that Ri = ri log ρ, and define r̄l1 ,
∑l

i=1 ri.

First, we derive the outage set Obsl for each layer in the high SNR regime, which we denote by Ll.

For the power allocation ρl = ρξl−1 − ρξl , the l.h.s. of the inequality in the definition of Obsl in (21) is

given by

I(Ul;V|Ul−1
1 ) = I(UL

l ;V|Ul−1
1 )− I(UL

l+1;V|Ul−1
1 )

= log
det
(
I + ρξl−1

M∗
HHH

)
det
(
I + ρξl

M∗
HHH

)
= log

M∗∏
i=1

1 + ρξl−1

M∗
λi

1 + ρξl
M∗
λi

.
= ρ

∑M∗
i=1(ξl−1−αi)+−(ξl−αi)+ . (63)

The r.h.s. of the inequality in the definition of Obsl in (21) can be calculated as in (54). Then, from

(63) and (54), Ll follows as:
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Ll ,

{
(α, β) : b

M∗∑
i=1

[(ξl−1 − αi)+ − (ξl − αi)+]

<

(
l∑

i=1

bri − (x− β)

)+

−

(
l−1∑
i=1

bri − (x− β)

)+
 .

Since Obsl are mutually exclusive, in the high SNR we have

EDbs(R, ξ) =

L∑
l=0

∫
Obsl+1

Dd

(
l∑

i=0

b/2Ri, γ

)
ph(H)pΓ(γ)dHdγ

.
=

L∑
l=0

∫
Ll+1

ρ−(max{
∑l
i=0 bri,(x−β)+}+β+SA(α))dαdβ

.
=

L∑
l=0

ρ−∆l(r,ξ)

.
= ρ−∆L

bs(r,ξ), (64)

where, from Varadhan’s lemma, the exponent for each integral term is given by

∆bs
l (r, ξ) = inf

Ll+1

max
{
br̄l0, (x− β)+

}
+ β + SA(α). (65)

Then, the distortion exponent is found as

∆L
bs(b, x) = max

r,ξ
min

l=0,...,L

{
∆bs
l (r, ξ)

}
. (66)

Similarly to the DMT, we consider the successive decoding diversity gain, defined in [9], as the solution

to the probability of outage with successive decoding of each layer, given by

dds(rl, ξl−1, ξl) , inf
α+

SA(α) (67)

s.t. rl >
M∗∑
i=1

[(ξl−1 − αi)+ − (ξl − αi)+].

Without loss of generality, consider the multiplexing gain rl given by rl = k(ξl−1 − ξl) + δl, where
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k ∈ [0, 1, ...,M∗ − 1] and 0 ≤ δl < ξl−1 − ξl. Then, the infimum for (67) is found as

dds(rl, ξl−1, ξl) = Φkξl−1 −Υkδl, (68)

with

α∗i =


ξl−1, 1 ≤ i < M∗ − k,

ξl−1 − δl, i = M∗ − k,

0, M∗ − k < i ≤M∗.

Now, we solve (65), using (68) for each layer, as a function of the power allocation ξl−1 and ξl, and

the rate rl.

When no layer is successfully decoded, i.e., l = 0, we have

∆bs
0 (r, ξ) = inf(x− β)+ + β + SA(α)

s.t. b
M∗∑
i=1

[
(ξ0 − αi)+ − (ξ1 − αi)+

]
< (br1 − (x− β))+.

The infimum is achieved by β∗ = x and using (67), we have

∆bs
0 (r, ξ) = x+ dds (r1, ξ0, ξ1) .

At layer l, the distortion exponent is given by the solution of the following optim

∆bs
l (r, ξ) = inf max{br̄l1, (x− β)+}+ β + SA(α)

s.t. b
M∗∑
i=1

[
(ξl − αi)+ − (ξl+1 − αi)+] < (br̄l+1

1 − x+ β)+ − (br̄l1 − x+ β)+.

If br̄l1 ≥ x, the infimum is obtained for β∗ = 0 and solving

∆bs
l (r, ξ) = inf max{br̄l1, x}+ SA(α)

s.t.
M∗∑
i1

[
(ξl − αi)+ − (ξl+1 − αi)+] < rk+1.
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Using (67), we obtain the solutio as

∆bs
l (r, ξ) = max{x, br̄l1}+ dds (rl+1, ξl, ξl+1) .

If br̄l1 ≤ x, the infimum is given by β∗ = (x− br̄l1)+, and again, we have a version of (67) with the

distortion exponent

∆bs
l (r, ξ) = x+ dds (rl+1, ξl, ξl+1) .

At layer L, the distortion exponent is the solution to the optimization problem

∆bs
L (r, ξ) = inf max

{
br̄L1 , (x− β)+

}
+ β + SA(α)

s.t.b
M∗∑
i=1

[(ξL−1 − αi)+ − (ξL − αi)+] ≥
(
br̄L1 − (x− β)

)+ − (br̄L−1
1 − (x− β)

)+
.

The infimum is achieved by α∗=0 and β∗=0, and is given by

∆bs
L (r, ξ) = max

{
br̄L1 , x

}
, for rL ≤M∗(ξL−1 − ξL).

Note that the condition on rL always holds.

Gathering all the results, the distortion exponent problem in (66) is solved as the minimum of the

exponent of each layer, ∆bs
l (r, ξ), which can be formulated as

∆L
bs(b, x) = max

r,ξ
t

s.t. t ≤ x+ dsd (r1, ξ0, ξ1) ,

t ≤ max{br̄l1, x}+ dsd (rl+1, ξl, ξl+1) , for l = 1, . . . , L− 1,

t ≤ max{br̄L1 , x}. (69)

If x ≥ br̄L1 , then max{x, br̄l1} = x for all l, and the minimum distortion exponent is given by

∆bs
L (r, ξ) = x, which implies ∆L

mj(b, x) = x. If x ≤ br1, then max{x, br̄l1} = br̄l1 for all l. In general,

if br̄q1 < x ≤ br̄q+1
1 , q = 0, ..., L, and r̄0

1 , 0, r̄L+1
1 , ∞, then (69) can be formulated, using rl =
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k(ξl−1 − ξl) + δl, δ , [δ1, · · · , δL] and ξ, as the following linear optimization program:

∆L
mj(b, x) = min

1≤q≤L,
0≤k≤M∗−1.

min
δ,ξ
−t

s.t. t ≤ x+ Φkξ0 −Υkδ1,

t ≤ x+ Φkξl −Υkδl+1, for l = 1, . . . , q,

t ≤ b
l∑

i=1

[k(ξi−1 − ξi) + δi] + Φkξl −Υkδl+1,

for l = q, . . . , L− 1,

t ≤ b
L∑
i=1

[k(ξi−1 − ξi) + δi],

0 ≤ δl < ξl−1 − ξl, for l = 1, . . . , L,

0 ≤ ξL ≤ ... ≤ ξ1 ≤ ξ0 = 1,

l′∑
l=1

[bk(ξl−1 − ξl) + δl] < x. (70)

The linear program (70) can be efficiently solved using numerical methods. In Figure 4, the numerical

solution is shown. However, in the following we provide a suboptimal yet more compact analytical

solution by fixing the multiplexing gains r. We fix the multiplexing gains as r̂l = [(k+1)(ξl−1−ξl)−ε1],

ε1 > 0 for k = 0, ...,M∗ − 1, and δl , (ξl−1 − ξl)− ε1, when the bandwidth ratio satisfies

b ∈
[

Φk+1 + x

k + 1
,
Φk + x

k

)
. (71)

Assume br1≥x. Then, each distortion exponent is found as

∆̂bs
0 (r, ξ) = x+ Φkξl −Υkδl+1,

∆̂bs
l (r, ξ) = br̄l1 + Φkξl −Υkδl+1, for l = 1, ..., L− 1,

∆̂bs
L (r, ξ) = br̄L1 . (72)

Similarly to the other schemes, for which the distortion exponent is maximized by equating the

exponents, we look for the power allocation ξ, such that all distortion exponent terms ∆bs
l (r̂, ξ) in
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(66) are equal.

Equating all distortion exponents ∆̂bs
l (r̂, ξ) for l = 2, ..., L− 1, i.e., ∆̂bs

l−1(r̂, ξ) = ∆̂bs
l (r̂, ξ), we have

dsd (r̂l, ξl−1, ξl) = brl + dsd (r̂l+1, ξl, ξl+1) . (73)

Since r̂l = [(k + 1)(ξl−1 − ξl)− ε1], we have

dsd (r̂l, ξl−1, ξl) = Φkξl−1 −Υk(ξl−1 − ξl − ε1).

Substituting in (73), we find that the power allocations for l ≥ 2 need to satisfy,

(ξl − ξl+1) = ηk(ξl−1 − ξl) +O(ε1),

where ηk is defined in (22) and O(ε1) denotes a term that tends to 0 as ε1 → 0. Then, for l = 2, ..., L−1

we obtain

ξl − ξl+1 = ηl−1
k (ξ1 − ξ2) +O(ε1), (74)

and ξl can be found as

1− ξl = (1− ξ1) +

l−1∑
i=1

(ξi − ξi+1) +O(ε1)

= (1− ξ1) +

l−1∑
i=1

ηi−1
k (ξ1 − ξ2) +O(ε1)

= (1− ξ1) + (ξ1 − ξ2)
1− ηl−1

k

1− ηk
+O(ε1).

Then, for l = 2, ..., L, we have

ξl = ξ1 − (ξ1 − ξ2)
1− ηl−1

k

1− ηk
+O(ε1). (75)



68

From ∆̂bs
L (r̂, ξ)=br̄L1 = b

∑L
i=1(k + 1)(ξi−1 − ξi), we have

∆̂bs
L (r̂, ξ) = b(k + 1)(ξ0 − ξ1) + b(k + 1)(ξ2 − ξ1)

L∑
i=1

ηi−1
k +O(ε1)

= b(k + 1)

[
(ξ0 − ξ1) + (ξ2 − ξ1)

1− ηL−1
k

1− ηk

]
+O(ε1). (76)

Putting all together, from (72) we obtain

∆̂bs
0 (r̂, ξ) = x+ Φkξ0 −Υk(ξ0 − ξ1 − ε1),

∆̂bs
l (r̂, ξ) = b(k + 1)(ξ0 − ξ1) + Φkξ1 −Υk(ξ1 − ξ2 + ε1), for l = 1, ..., L− 1,

∆̂bs
L (r̂, ξ) = b(k + 1)[(ξ0 − ξ1) + (ξ2 − ξ1)Γk]+O(ε1). (77)

By solving ∆̂L
bs(b, x) = ∆̂bs

0 (r̂, ξ) = ∆̂bs
1 (r̂, ξ) = ∆̂bs

L (r̂, ξ), and letting ε1 → 0, we obtain (23), and

ξ1 =
(Υk + ΦkΓk)(Υk + b(k + 1)− Φk − x)

(Υk + b(1 + k))(Υk + b(1 + k)Γk)− b(k + 1)ΦkΓk
,

ξ1 − ξ2 =
Φk(Υk + b(k + 1)− Φk − x)

(Υk + b(1 + k))(Υk + b(1 + k)Γk)− b(k + 1)ΦkΓk
. (78)

For this solution to be feasible, the power allocation sequence has to satisfy 1 ≥ ξ1 ≥ ...ξL ≥ 0,

i.e., ξl − ξl+1 ≥ 0. From (74) we need ηk ≥ 0 and ξ1 − ξ2 ≥ 0. We have ηk ≥ 0 if b ≥ Φk+1

k+1 , which

holds in the regime characterized by (71). Then, ξ1 − ξ2 ≥ 0 holds if Υk + b(k + 1)− Φk − x ≥ 0 and

(Υk + b(1 + k))(Υk + b(1 + k)Γk) − b(k + 1)ΦkΓk ≥ 0. It can be shown that (Υk + b(1 + k))(Υk +

b(1 + k)Γk) − b(k + 1)ΦkΓk is monotonically increasing in b ≥ 0, and positive for k = 0, ...,M∗ − 1.

Therefore, we need to check if Υk + b(k+ 1)−Φk−x ≥ 0. This holds since this condition is equivalent

to

b ≥ Φk+1 + x

k + 1
.

Note that, in this regime, we have ξ1 ≥ 0. In addition, ξl = ξ1 + (ξ1 − ξ2)Γk ≥ 0. Therefore, for each k

the power allocation is feasible in the regime characterized by (71). It can also be checked that br1 > x

is satisfied. This completes the proof.



69

A. Convergence for L→∞.

In the limit of infinite layers, i.e., L → ∞, this scheme converges to ∆̂∞bs (b, x) = max{x, b(k + 1)}

when 0 ≤ ηk < 1, i.e.,

b ∈
[

Φk+1 + x

k + 1
,

Φk

k + 1

)
,

and it converges to

∆̂∞bs (b, x) = Φk + x

(
b(k + 1)− Φk

b(k + 1)− Φk+1

)
,

when ηk ≥ 1, that is, for

b ∈
[

Φk

k + 1
,
Φk + x

k

)
.

REFERENCES

[1] A. Wyner, “The rate-distortion function for source coding with side information at the decoder,” Information and Control,

vol. 38, no. 1, pp. 60–80, Jan. 1978.
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[7] D. Gündüz and E. Erkip, “Distortion exponent of parallel fading channels,” in Proc. IEEE Int’l Symposium on Information

Theory Proceedings (ISIT), Jul. 2006, pp. 694–698.

[8] ——, “Source and channel coding for cooperative relaying,” IEEE Trans. on Information Theory, vol. 53, no. 10, pp.

3454–3475, Oct. 2007.

[9] ——, “Joint source–channel codes for MIMO block-fading channels,” IEEE Trans. on Information Theory, vol. 54, no. 1,

pp. 116–134, Jan. 2008.



70
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